Atal's Integrals
	Back to integral selection
	
	
    Given a number \(r\), define a function \(f_r\) on \([0,1]\) as follows:
    $$f_r(x) =\begin{cases} x^r \left( \frac{1}{x}-n \right) & \text{if } n \in \mathbb{N} \text{ and } \frac{1}{n+1} \le x \leq \frac{1}{n}, \\ 0 & \text{if } x = 0. \end{cases}$$
    If \(r > 1\), \(f_r\) has bounded variation and so we can consider Stieltjes integrals with respect to \(f_r\).
    
    The following links contain pages with the values of the sum
    $$\sum_{m=0}^{N-1} \int_{m/N}^{(m+1)/N} \left( t - \frac{m}{N} \right) \,df_r(t)$$
    as \(N\) and \(r\) vary.
    
    For integer \(r\):
    \(\underline{r=2}\)
    
    \(\underline{r=3}\)
    
    \(\underline{r=4}\)
    
    \(\underline{r=5}\)
    
    \(\underline{r=6}\)
    
    \(\underline{r=7}\)
    
    \(\underline{r=8}\)
    
    \(\underline{r=9}\)
    
    \(\underline{r=10}\)
    
    \(\underline{r=11}\)
    
    For half-integer \(r\):
    \(\underline{r=\frac{3}{2}}\)
    
    \(\underline{r=\frac{5}{2}}\)
    
    \(\underline{r=\frac{7}{2}}\)
    
    \(\underline{r=\frac{9}{2}}\)
    
    \(\underline{r=\frac{11}{2}}\)