
What is the Recursion Theorem?

History

Alan Turing (1912-1954) Turing was a British mathematician, often hailed as the
father of modern computer science.

Turing developed the theory of the Turing machine which we’ll introduce here
and use for the machinery of the proof.

In fact, the Turing machine is the theoretical basis for modern computers (rather
than the lambda calculus which is an equivalent model for computation).

Turing played a pivotal role in WWII, working in Bletchley park to reverse-
engineer and decrypt Nazi telecommunications which were encoded.

There are four movies made about Turing’s life, which was very interesting and
dramatic: apart from the fact that he made enormous contributions to mathematics
played an extremely important role in WWII, he was also homosexual in the UK at
a time when that was illegal, and so he was forced to undergo hormone therapy. He
died when he was only 41 of cyanide poisoning, and they found a half-eaten apple
by his bedside. Initially, his death was called a suicide, but many people close to
him said that didn’t make sense and an autopsy showed that it was more likely
that he had inhaled the cyanide, and he was working on some chemistry experiment
with cyanide which led many people to claim that his death was accidental. But
nobody ever tested the apple so it’s all mysterious and dramatic and stuff, and it
makes for good movies.

Oh yeah and also he was posthumously pardoned by the queen of england in
2013 and now there’s a law named after him or something.

Stephen Cole Kleene (KLAY-nee) (1909-1994) Kleene was an American mathematician
and a student of Alonzo Church (of the Church-Turing thesis, the assumption that
when people say “algorithm,” they mean some procedure that can be carried out
by a Turing machine or a λ-expression of the λ-calculus).

Alongside Turing and a few others, he essentially founded the branch of mathe-
matical logic called “recursion theory” which is the precursor to modern theoretical
computer science.

We won’t be discussing the λ-calculus in this talk, but it was in this language
that Kleene originally formulated his result.

Kleene also played an important role in WWII, serving as a lieutenant comman-
der in the US Navy.

1



A Primer on Turing Machines

What is a Turing Machine? Formally, a Turing machine is a 7-tuple (Q,Γ, b,Σ, q0, F, δ)
where Q is a finite of “states,” Γ is a finite set of “tape symbols,” b ∈ Γ is the “blank
symbol,” Σ ⊆ Γ ∖ {b} is the set of “input symbols,” q0 ∈ Q is the “initial state,”
and F ⊆ Q is the set of “final states.” The most important part is the “transition
function,” δ ∶ (Q ∖ F )×Γ→ Q×Γ×{L,R}. This function describes the operation of
the machine: given the current state of the machine and the current symbol under
the read/write head, what state will the machine take in the next time step, what
symbol will the read/write head write over the symbol it’s currently seeing in the
tape, and what direction should the read/write head move on the tape?

What does a Turing Machine do? For our purposes, we will think of a Turing Machine
as starting in state q0 with the read/write head at position 0 of the symbol tape
and with an “input string” (some word over Σ, an element of Σ∗) printed on the
symbol tape starting at position 0, and with the blank symbol written on all of the
other positions on the symbol tape. If a Turing Machine enters some state in F , its
operation halts (the transition function’s domain doesn’t include states in F ) and
we say that the Turing Machine “returns” the string written on the tape starting
at position 0 and up until the first position on the tape which has a symbol not in
Σ (the blank symbol b, for example). This string (also an element of Σ∗) is also
called the “output string.”

Notation: If a Turing Machine M enters a final state (or “halts”) when given input
string x, we write M(x) ↓ (otherwise we write M(x) ↑). If this happens and M
has returned the string y, we write M(x) ↓= y.

2



What else can a Turing Machine do? There is some Turing Machine M which can simu-
late any other Turing Machine M ′, receiving as its input string an encoding of M ′

into tape symbols, along with an input string for M ′ (note that we fix here some
specific encoding of Turing Machines that will be used throughout). Another thing
which is computable by Turing Machine is the ability to check whether or not its
input string is a well-formed encoding of some other Turing Machine (returning 0
or 1, or some other encoding of False or True).

How many Turing Machines are there? We henceforth restrict our investigation to Turing
Machines operating over the tape alphabet Γ = {0,1, b} and input alphabet Σ =

{0,1}. We also restrict Q, the set of states, to consist of elements q0, q1, q2, . . . ,
essentially just removing the freedom to name states as we please. This class of
Turing Machines is enough to consider since any Turing Machine which uses more
symbols in its tape or input alphabet can be simulated by a Turing Machine of
this class, simply assigning each symbol a bit-string (i.e. if the input alphabet
is {α,β, γ, δ}, we can let the string 00 represent α, 01 for β, 10 for γ and 11 for
delta). Thus, since each set in the description for a Turing Machine is finite, there
are only countably many Turing Machines, meaning we can index the set of Turing
Machines by N.

Indexing the Turing Machines: For our purposes, we will index the Turing Machines
by the number associated with their encoding in binary: the first Turing Machine
is the one whose binary encoding, when read as a number (i.e. 101 is the binary
encoding of 5) is lowest. We write Mj for the jth Turing Machine under this index.
As a side note, any bijective function f ∶ N → N which is computable (i.e. “total
recursive,” more about this soon) gives rise to another suitable index, i.e. Mf(j)
can be the jth Turing Machine and the rest of our construction will work fine.

One more important capability: Using our indexing system (or any other computable
index), there is a Turing Machine which can, given some input number j, find and
output the encoding for Mj. This is acheivable simply by running through each
binary word in numerical order, checking to see if the current word is a properly
formed Turing Machine encoding, and (if it is) increasing some stored variable until
that variable hits j, at which point the binary word will be returned. Similarly, it
is possible for some Turing Machine to return the index of a Turing Machine whose
encoding is given as input.

3



The Recursion Theorem

Definitions: A “partial function” is a function f ∶ N → N ∪ {⊥} (think of ⊥ as
“undefined”). A partial function f is called a “partial recursive” function if it is
computed by some Turing Machine Mj, i.e. whenever f(x) = y, if y ∈ N we have
Mj(x) ↓= y and if y =⊥ we have Mj(x) ↑. Every Turing Machine computes some
partial recursive function, and we write ϕj to denote the partial recursive function
computed by Mj. A “total recursive” function is a partial recursive function whose
range does not include ⊥ (the Turing Machine which computes it halts on every
input).

Notation: Since ∣Nk∣ = ∣N∣, let (x1, x2, . . . , xk) ↦ ⟨x1, x2, . . . , xk⟩ be your favorite
computable injection from Nk into N, perhaps ⟨x1, x2, x3, . . . , xk⟩ = 2x13x25x3⋯pxkk .
Using this, when we’d like to think of functions has having multiple inputs, we
really only need a single-input function.

The Sm,n Theorem: Let f be a partial recursive function. Then there exists a total
recursive function σ so that for all i, j ∈ N, ϕσ(i)(j) = f (⟨i, j⟩).

Proof. Given i, let M be a Turing Machine which, given input j, encodes ⟨i, j⟩
on the tape and then simulates the machine which computes f , using ⟨i, j⟩ as the
input for the simulated machine. Let σ(i) be the index of M . ∎

The Recursion Theorem: Let σ be a total recursive function. Then there is some index
n so that ϕn = ϕσ(n).

Proof. Consider a partial recursive function f which has f (⟨i, j⟩) = ϕσ(ϕi(i))(j) (if
ϕi(i) =⊥ we say the whole expression is ⊥). By the Sm,n Theorem, there is a total
recursive function g which has ϕg(i)(j) = f (⟨i, j⟩). Thus we have ϕg(i) = ϕσ(ϕi(i))
for every i. Let n ∈ N so that Mn computes g. Then ϕg(n) = ϕσ(ϕn(n)) = ϕσ(g(n))
since ϕn(n) = g(n), and so g(n) is the “fixed point index” whose existence was
posited. ∎

The Second Recursion Theorem: Let f be a partial recursive function. Then there is
an index n so that for all j ∈ N, ϕn(j) = f (⟨n, j⟩).

Proof. Let σ be a total recursive function so that ϕσ(i)(j) = f (⟨i, j⟩) for any i, j ∈ N
(the existence of σ is due to the Sm,n theorem). Then let n be the index so that
ϕn = ϕσ(n) (whose existence is due to the first recursion theorem). We have ϕn(j) =
ϕσ(n)(j) = f (⟨n, j⟩) for any j. ∎

4


