
What is the Recursion Theorem?

Turing Machines

What is a Turing Machine? Formally, a Turing machine is a 7-tuple (Q,Γ, b,Σ, q0, F, δ) where Q is a finite set
of “states,” Γ is a finite set of “tape symbols,” b ∈ Γ is the “blank symbol,” Σ ⊆ Γ∖ {b} is the set of “input symbols,”
q0 ∈ Q is the “initial state,” and F ⊆ Q is the set of “final states.” The most important part is the “transition
function,” δ ∶ (Q ∖ F ) × Γ→ Q × Γ × {L,R}. This function describes the operation of the machine: given the current
state of the machine and the current symbol under the read/write head, what state will the machine take in the next
time step, what symbol will the read/write head write over the symbol it’s currently seeing in the tape, and what
direction should the read/write head move on the tape?

What does a Turing Machine do? For our purposes, we will think of a Turing Machine as starting in state
q0 with the read/write head at position 0 of the symbol tape and with an “input string” (some word over Σ, an
element of Σ∗) printed on the symbol tape starting at position 0, and with the blank symbol written on all of the
other positions on the symbol tape. If a Turing Machine enters some state in F , its operation halts (the transition
function’s domain doesn’t include states in F ) and we say that the Turing Machine “returns” the string written on
the tape starting at position 0 and up until the first position on the tape which has a symbol not in Σ (the blank
symbol b, for example). This string (also an element of Σ∗) is also called the “output string.”

Notation: If a Turing Machine M enters a final state (or “halts”) when given input string x, we write M(x) ↓
(otherwise we write M(x) ↑). If this happens and M has returned the string y, we write M(x) ↓= y.

What else can a Turing Machine do? There is some Turing Machine M which can simulate any other Turing
Machine M ′, receiving as its input string an encoding of M ′ into tape symbols, along with an input string for M ′

(note that we fix here some specific encoding of Turing Machines that will be used throughout). Another thing which
is computable by Turing Machine is the ability to check whether or not its input string is a well-formed encoding of
some other Turing Machine (returning 0 or 1, or some other encoding of False or True).

How many Turing Machines are there? We henceforth restrict our investigation to Turing Machines operating
over the tape alphabet Γ = {0,1, b} and input alphabet Σ = {0,1}. We also restrict Q, the set of states, to consist
of elements q0, q1, q2, . . . , essentially just removing the freedom to name states as we please. This class of Turing
Machines is enough to consider since any Turing Machine which uses more symbols in its tape or input alphabet can
be simulated by a Turing Machine of this class, simply assigning each symbol a bit-string (i.e. if the input alphabet
is {α,β, γ, δ}, we can let the string 00 represent α, 01 for β, 10 for γ and 11 for delta). Thus, since each set in the
description for a Turing Machine is finite, there are only countably many Turing Machines, meaning we can index
the set of Turing Machines by N.

Indexing the Turing Machines: For our purposes, we will index the Turing Machines by the number associated
with their encoding in binary: the first Turing Machine is the one whose binary encoding, when read as a number
(i.e. 101 is the binary encoding of 5) is lowest. We write Mj for the jth Turing Machine under this index. As a side
note, any bijective function f ∶ N → N which is computable (i.e. “total recursive,” more about this soon) gives rise
to another suitable index, i.e. Mf(j) can be the jth Turing Machine and the rest of our construction will work fine.

One more important capability: Using our indexing system (or any other computable index), there is a Turing
Machine which can, given some input number j, find and output the encoding for Mj . This is acheivable simply by
running through each binary word in numerical order, checking to see if the current word is a properly formed Turing
Machine encoding, and (if it is) increasing some stored variable until that variable hits j, at which point the binary
word will be returned. Similarly, it is possible for some Turing Machine to return the index of a Turing Machine
whose encoding is given as input.

1



The Recursion Theorem

Definitions: A “partial function” is a function f ∶ N → N ∪ {⊥} (think of ⊥ as “undefined”). A partial function f
is called a “partial recursive” function if it is computed by some Turing Machine Mj , i.e. whenever f(x) = y, if y ∈ N
we have Mj(x) ↓= y and if y =⊥ we have Mj(x) ↑. Every Turing Machine computes some partial recursive function,
and we write ϕj to denote the partial recursive function computed by Mj . A “total recursive” function is a partial
recursive function whose range does not include ⊥ (the Turing Machine which computes it halts on every input).

Notation: Since ∣Nk∣ = ∣N∣, let (x1, x2, . . . , xk) ↦ ⟨x1, x2, . . . , xk⟩ be your favorite computable injection from Nk
into N, perhaps ⟨x1, x2, x3, . . . , xk⟩ = 2x13x25x3⋯pxk

k . Using this, when we’d like to think of functions having multiple
inputs, we really only need a single-input function.

The Sm,n Theorem: Let f be a partial recursive function. Then there exists a total recursive function σ so that
for all i, j ∈ N, ϕσ(i)(j) = f (⟨i, j⟩).

Proof. Given i, let M be a Turing Machine which, given input j, encodes ⟨i, j⟩ on the tape and then simulates the
machine which computes f , using ⟨i, j⟩ as the input for the simulated machine. Let σ(i) be the index of M . ∎

The Recursion Theorem: Let σ be a total recursive function. Then there is some index n so that ϕn = ϕσ(n).

Proof. Consider a partial recursive function f which has f (⟨i, j⟩) = ϕσ(ϕi(i))(j) (if ϕi(i) =⊥ we say the whole
expression is ⊥). By the Sm,n Theorem, there is a total recursive function g which has ϕg(i)(j) = f (⟨i, j⟩). Thus
we have ϕg(i) = ϕσ(ϕi(i)) for every i. Let n ∈ N so that Mn computes g. Then ϕg(n) = ϕσ(ϕn(n)) = ϕσ(g(n)) since
ϕn(n) = g(n), and so g(n) is the “fixed point index” whose existence was posited. ∎

The Second Recursion Theorem: Let f be a partial recursive function. Then there is an index n so that for
all j ∈ N, ϕn(j) = f (⟨n, j⟩).

Proof. Let σ be a total recursive function so that ϕσ(i)(j) = f (⟨i, j⟩) for any i, j ∈ N (the existence of σ is due to the
Sm,n theorem). Then let n be the index so that ϕn = ϕσ(n) (whose existence is due to the first recursion theorem).
We have ϕn(j) = ϕσ(n)(j) = f (⟨n, j⟩) for any j. ∎

Examples of Quines

Lisp

((lambda (x)

(list x (list (quote quote) x)))

(quote

(lambda (x)

(list x (list (quote quote) x)))))

Python

a = [’print "a =", a’, ’for s in a: print s’]

print "a =", a

for s in a: print s

References & Further Reading

[1] Kleene, Stephen Cole. “Introduction To Metamathematics”. 1950.

[2] Turing, Alan Mathison. “Computability and λ-definability”. The Journal of Symbolic Logic. December 1937.

[3] The Quine Page. http://www.nyx.net/ gthompso/quine.htm

2


