
What is the Lambda Calculus? - My Notes

In 1928, David Hilbert (1862 - 1943) posed the Entscheidungsproblem. This problem asks for
an algorithm which decides (namely, answers yes or no to) whether or not a given statement of
first-order logic is provable from some set of given axioms.

In 1936, Alan Turing (1912 - 1954) and Alonzo Church (1903 - 1995) independently published
papers showing that the Entscheidungsproblem is unsolvable (that there is no such algorithm).
Turing’s method used his work on so-called Turing machines. He reduced a different problem,
the Halting problem, to the Entscheidungsproblem, and then showed that the Halting problem
was unsolvable, thus showing the Entscheidungsproblem was also unsolvable. Church used the
λ-calculus and showed that there was no algorithm that decides whether two λ-expressions are
equivalent, another problem that reduces to the Entscheidungproblem.

Both of these proofs rely on one key unproven assumption, often called the Church-Turing thesis:
that Hilbert’s use of the word ”Algorithm” was a Turing machine (or equivalently a λ-expression).
More precisely, Church and Turing both posited that any procedure which could be carried out by
a human using pencil and paper (ignoring resource limitations) could be carried out by a turing
machine or a λ-expression.

While Turing’s machines and Church’s λ-calculus are equivalent universal models for computation
(as was proved by Turing in the cited paper, we will see what exactly it means for the two models to
be equivalent later in the talk when we discuss computable functions), Turing machines became the
theoretical foundation for modern computers due to the fact that the theoretical Turing machine
is something that is very straightforward to build in real life, and so Alan Turing is a much more
popular dude in the literature than Alonzo Church (for some numbers to back this up, Turing’s
wikipedia page has 240 notes, while Church’s only has 10).

In this talk, we will be combining the methods of Church and Turing, first looking at the basic
structure of the λ-calculus (Church’s idea) and then giving a concise proof of the undecidability of
the Halting problem (Turing’s idea) with the λ-calculus as the underlying machinery rather than
Turing machines.

I’d also quickly like to add that I’ll be using the word ”function” to talk about λ-expressions.
This is convention and means something more like a function in a programming language than a
mathematical function. In fact, another way to think of the λ-calculus is as a simple programming
language in and of itself.

1

1: λ-expressions

Definition: A λ-expression is a string of one of the following forms:

x some variable

λx.M where M is a λ-expression (function abstraction)

AB where A and B are λ-expressions (function application)

Notes: function application is left-associative: ABC ≡ (AB)C.
We can add parentheses for clarity or to provoke right-associative behavior: ABC /≡ A(BC).

Examples: λx.x λx.y λx.λy.xy (λx.(λy.xy))(λx.y)(λx.x) λx.(λy.(λz.xzyz))

Notation: Often λx(λy.M) is shortened to λxy.M . However, we should keep in mind that there
are actually two nested λ-expressions in λxy.M .

2: λ-calculus operations and β-normal form

We use the notation [y/x] to denote substitution of all instances of x in a string for y. For
example, [w/z]z ≡ w, [w/z]xzy ≡ xwy, and [a/b](λx.b) ≡ λx.a. A λ-expression can be changed
(reduced) by one of the two operations:

λx.M → λy.[y/x]M α-conversion: simply to avoid name collisions

(λx.M)A→ [A/x]M β-reduction: computation of a function application

Examples: λx.(λy.xy)→ λw.(λy.wy) λx.(λyz.zyx)→ λx.(λyw.wyx) λx.((λy.y)x)→
λx.x (λfx.f(f(fx)))gy → (λx.g(g(gx)))y → g(g(gy)) (λx.xx)(λx.xx)→ (λx.xx)(λx.xx)
(λx.y)z → y

Definition: A λ-expression is in β-normal form if no β-reduction operation can be performed.
For example, λx.x and y are in β-normal form while (λx.x)y is not because (λx.x)y → [y/x]x ≡ y
via β-reduction.

Definition: A λ-expression halts if, after a finite number of operations, it reaches a β-normal
form. For example, (λx.x)(λx.x) halts while (λx.xx)(λx.xx) doesn’t.

Notes: When using α-conversion, there must not be any y in M (i.e. we cannot create a name
collision).

It is often reasonable to think of a λ-expression in β-normal form as a function (algorithm)
acting on a λ-expression.

We apply the β-reduction rule ”outside-in” rather than ”inside-out” meaning we apply the
leftmost λ first.

2

3: Boolean algebra in the λ-calculus

We can define the Boolean values “True” and “False” in the following way:

T ∶= λxy.x F ∶= λxy.y

And we can define logical operations as follows:

∨ ∶= λxy.xTy Logical “or”

∧ ∶= λxy.xyF Logical “and”

¬ ∶= λx.xFT Logical “not”

For example: ¬T→ TFF→ F ∧TF→ TFF→ F ∨TF→ TTF→ T

4: Arithmetic in the λ-calculus (Church numerals)

We can define the natural numbers in the following way:

0 ∶= λfx.x 1 ∶= λfx.fx 2 ∶= λfx.f(fx) 3 ∶= λfx.f(f(fx)) ...

Notice that nf β-reduces to a function which applies f n times to its argument.

We can define some mathematical operations on the natural numbers as follows:

S ∶= λn.(λfx.nf(fx)) Successor function

+ ∶= λnm.nSm Addition

× ∶= λnm.n(+m)0 Multiplication

For example: S2 → λfx.2f(fx) → λfx.f(f(fx)) ≡ 3 +(3)(2) → 3S2 → S(S(S2)) →
S(S3)→ S4→ 5 ×(3)(2)→ 3(+2)0→ (+2)((+2)((+2)0))→ (+2)((+2)2)→ (+2)4→ 6

It is often useful to have an operator which checks if a given number is zero, returning a Boolean
value:

Z ∶= λn.nF¬F

For example: Z0 → 0F¬F → ¬F → T Z1 → 1F¬F → F¬F → F Z3 → 3F¬F →
F(F(F¬))F→ F

5: Computable functions

Definitions:
A function f ∶ Nk

→ N is λ-computable if there is a λ-expression F so that Fn1 . . .nk →
∗ m iff

f(n1, . . . , nk) =m.
A set A ⊆ Nk is λ-recognizable if there is a λ-expression L so that Ln1 . . .nk →

∗ T iff (n1, . . . , nk) ∈

A.
If there is an L as above so that Ln1 . . .nk halts for every (n1, . . . , nk) ∈ Nk, then A is

λ-decidable.

3

6: Encodings of λ-expressions

We will need to slightly restrict our definition of a λ-expression by only allowing variable names
to be x or x followed by any number of ′s: x, x′, x′′, x′′′, etc. We will also require that λ-expressions
be written out “in full” (i.e. in terms of only the six basic symbols required, which are listed in the
table below, and with only one variable per λ). Now we can encode any λ-expression by a natural
number by translating symbols to digits as follows:

Symbol λ . x ′
()

Digit 1 2 3 4 5 6

So, for example, our + algorithm defined earlier, when written out in our more restrictive notation,
looks like this:

λx.λx′.x(λx′′.λx′′′.λx′′′′.x′′x′′′(x′′′x′′′′))x′

Which means its encoding, denoted < + >, is 132134235134421344421344442344344453444344446634.

7: The Halting problem

Given any λ-expression M and church numeral w, can we decide if Mw halts? More precisely, is
the set

{(<M >,w) ∣Mw halts} ⊆ N2

λ-decidable? As it turns out, the answer is no. If some λ-expression H λ-decides this set then we
can define a new λ-expression G ∶= λm.Hmm((λx.xx)(λx.xx))y. Now, does G < G > halt? Well, if
G < G > halts then we have H < G >< G >→

∗ T, so G < G >→ H < G >< G > ((λx.xx)(λx.xx))y →∗

T((λx.xx)(λx.xx))y → (λx.xx)(λx.xx), which of course does not halt. On the other hand, if
G < G > does not halt then H < G >< G >→

∗ F since H λ-decides the halting set. this means
G < G >→ H < G >< G > ((λx.xx)(λx.xx))y →∗ F((λx.xx)(λx.xx))y → y which is in β-normal
form, showing that G < G > halted. This contradiction shows that G (and thus H) cannot exist.

Extras:

Y ∶= λf.(λx.f(xx))(λx.f(xx)) (fixed-point combinator: recursion)

P ∶= λnfx.n(λgh.h(gf))(λu.x)(λu.u) (Predecessor)

− ∶= λnm.nPm (Subtraction)

≤∶= λnm.Z(−nm) (Less than or equal to comparison)

÷ ∶= λnm.Y (λfx.(≤mx)(+1(f(−xm)))0)n (Division)

! ∶= λn.Y (λfx.(Zn)1(×n(f(Px))))n (Factorial)

B ∶= λn.Y (λfx.(Zx)0((Z(Px))1(+(f(Px))(f(P (Px))))))n (n-th fibonacci number)

4

