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1 The Heat Equation

1.1 In Rn (and other nice spaces)

Let X be a nice space (eg a subset of Rn), and let u(x, t) denote the temperature at the point x ∈ X
at time t ∈ [0,∞). What happens if we set u(x, 0) = f(x) to be some initial temperature distribution?
How does the temperature evolve over time? For example:

• X = a disk. (heat spreads evenly to the whole disk)

• X = two disjoint disks. (heat spreads to only one disk, not the other)

• X = two disjoint disks connected by a tiny strip. (heat spreads to the other disk, but slowly)

• X = a hyperbolic or euclidean disk of the same area. (heat spreads faster in the hyperbolic disk)

So understanding how heat flows in a space can tell us about the geometry and topology of the space
in a more quantitative way. Rather than just being “connected” or “disconnected,” we have a way to
measure how connected a space is.

The equation which u(x, t) satisfies is the heat equation

∂tu = ∆u, where ∆ = ∂2
x1

+ · · ·+ ∂2
xn

is the Laplacian (in Rn).

This is a reasonable equation for heat flow, because

Theorem (Pizzetti; 1909). let fR(x) denote the average value of f on the sphere of radius R around
x. Then

lim
R→0

fR(x)− f(x)

R2
=

(∆f)(x)

2n
.

So ∂tu = ∆u says that the rate of change of temperature at a point is proportional to the difference
between the temperature near that point and the temperature at that point. If you are near something
hot, your temperature will increase. If you are near something cold, your temperature will decrease.

1.2 In Graphs

If you are a data scientist, you might want to understand the connectivity of a network G of data in
a quantitative way. Can we do that using the heat equation? If u(v, t) represents the temperature at
a vertex v ∈ V (G) at time t, what can we say about the evolution of u over time?

We can’t just write ∂tu = ∆u, since a graph isn’t a smooth space: it’s just a collection of vertices
and edges. But the theorem of Pizzetti motivates the Normalized Discrete Laplacian:

(L̃f)(v) := f(v)− f(v),

where f(v) is the average value of f on all the neighbors of v. For example, with this graph:
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v1

v2

v3 v4

if we represent a function f : V (G) → R as a column vector

f =


f(v1)
f(v2)
f(v3)
f(v4)

 ∈ RV (G), then L̃f =


−1 1/2 1/2 0
1/2 −1 1/2 0
1/3 1/3 −1 1/3
0 0 1 −1



f(v1)
f(v2)
f(v3)
f(v4)

 .

We will actually clear the denominators of the matrix L̃ to obtain the unnormalized Discrete Laplacian:

L =


−2 1 1 0
1 −2 1 0
1 1 −3 1
0 0 1 −1

 ,

which (in general) has 1 in the (i, j) position if vertex i is connected to vertex j, and has the negatives
of the degrees of the vertices along the diagonal. This will have advantages that we will see later, but
for now let’s consider some examples of the evolution of the discrete heat equation ∂tu = Lu:

• G = a complete graph. (heat spreads evenly very quickly)

• G = a path graph. (heat spreads evenly, but more slowly)

• G = a disjoint union of two complete graphs. (heat does not spread to the other component)

• G = a graph with two different highly connected clusters, and a few edges between them. (heat
spreads within each cluster very quickly, but only very slowly does it equalize between clusters)

The last example inspires a simple algorithm for detecting clusters in a graph of data (which may just
be provided to you as a list of vertice and edges, without any nice picture drawn). First, randomize
the temperatures at all vertices. Then let the heat equation evolve. You will see a picture like this:
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After a while the heat equalizes across the whole network, but if you pause the evolution after a short
time (for example, at time t = 0.5 in this plot), you might see a few distinct clusters of heat values;
these correspond to the clusters of the graph. The above plot was generated using the following graph,
where the color of the vertex corresponds to the color of the curve:

Of course, if we were doing this in a real application, we would not have these colors, but we could still
recover the clusters by, for example, running the k-means algorithm on the set of numbers represented
by the plot at time 0.5, say.

1.3 The Spectrum of the Discrete Laplacian

One advantage of clearing the denominators is that now L is a symmetric matrix, so we can easily
apply the Spectral Theorem to obtain real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn, (now n = |V (G)|)

and their corresponding orthonormal basis of eigenvectors ϕ1, . . . , ϕn ∈ RV (G) satisfying

Lϕi = λiϕi.

This will make studying the discrete heat initial value problem of finding u such that

∂tu = Lu and u(v, 0) = f(v)

much easier. If we write f and u in terms of ϕ-coordinates as

f =

n∑
i=1

fi · ϕi, and u(t) =

n∑
i=1

ui(t) · ϕi

then the discrete heat equation becomes

n∑
i=1

∂tui(t) · ϕi =

n∑
i=1

ui(t) · Lϕi =

n∑
i=1

ui(t) · λiϕi,
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and so we get a bunch of ordinary differential equations

∂tui = λiui with initial condition ui(0) = fi.

This is easily solved by
ui(t) = fie

λit.

So, each ϕ-coefficient of u evolves separately and behaves like an exponential; in total, we have

u(t) =

n∑
i=1

fie
λit · ϕi.

Notice that at least one of the eigenvalues is zero, since any constant function is in the kernel of
the discrete Laplacian. In fact, the multiplicity of the eigenvalue 0 is exactly the same as the number
of connected components of the graph. The eigenvectors corresponding to these 0 eigenvalues are all
constant on connected components. Intuitively, the heat distribution should converge to something
which is constant on connected components, and this means that all of the other eigenvalues should be
negative, so that the coefficients of the non-constant-on-components coordinates all go to zero. Thus

0 = λ1 ≥ λ2 ≥ · · · ≥ λn.

1.4 Spectral Gap

Suppose now that the graph G is connected, so that λ2 is strictly less than 0. The value of λ2 gives
a bound for how fast a heat distribution converges to the constant distribution:

∥u(t)− f1ϕ1∥ =

√√√√ n∑
i=2

|fieλit|2

≤

√√√√( n∑
i=2

|fi|2
)(

n∑
i=2

|eλit|2
)

≤
√
∥f∥2 · n · e2λ2t

=
√
n · ∥f∥ · eλ2t.

So, the more negative λ2 is, the faster the convergence to constant heat. It’s reasonable to say that
the speed of heat equalizing in the graph is a good quantitative measure of the “connectivity” of the
graph. Thus, the absolute value of λ2 is a good quantitative measure of the connectivity of a graph,
and |λ2| is called the “spectral gap” of the graph, denoted by sg(G). Let’s see some examples:

• A cycle graph Cn: sg(Cn) = 2− 2 cos
(
2π
n

)
, so sg(Cn) → 0 as n → ∞.

• A complete graph Kn: sg(Kn) = n, so sg(Kn) → ∞ as n → ∞.

Notice that the spectral gap equals zero if and only if the graph is disconnected, so this number
carries more information than just knowing whether the graph is connected or not. This is just true
for finite graphs, by the way. For infinite graphs, a similar notion can be defined, and the spectral
gap of an infinite graph is zero if and only if that graph is amenable. For example, the spectral gap
of the Cayley graph of the free group on two generators is

4− 2
√
4− 1 > 0.

You may have heard of amenability only for groups, but the Følner set definition of amenability
works for infinite graphs too, and a group is amenable if and only if every Cayley graph of that group
is amenable. The spectral gap we defined above can also be viewed as a quantitative analog of nona-
menability for finite graphs. For more about the relationship between spectral gap and amenability,
look up Cheeger’s Inequality.
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2 Regular Graphs

A graph is called regular if all of its vertices have the same degree (i.e. the number of adjacent edges).
If that degree is d, the graph is d-regular.

2.1 Alon-Boppana Bound

A d-regular graph can have at most dn
2 edges. Compared with a complete graph, which has

(
n
2

)
edges,

this is quite sparse. So, one might expect that a d-regular graph cannot be too well connected. Indeed,

Theorem (Alon-Boppana; 1986). If (Gn) is a sequence of d-regular graphs with |V (Gn)| → ∞, then

lim sup
n→∞

sg(Gn) ≤ d− 2
√
d− 1.

A Ramanujan graph is a graph which is exceptional, with regards to the Alon-Boppana bound.
Specifically, a Ramanujan graph is a d-regular graph G such that sg(G) ≥ d− 2

√
d− 1. For example,

the complete graphs are all Ramanujan graphs: they are (n− 1)-regular and they have spectral gap

n, which is greater than (n− 1)− 2
√
n− 2.

However, more interesting and useful would be a family of growing Ramanujan graphs, all with the
same degree. Finding such a family turns out to be much trickier.

2.2 Adjacency Matrix

There is another useful graph matrix to consider, which might be more familiar to people with com-
puter science experience. That matrix is the adjacency matrix A, which has a 1 in the (i, j) entry if
vertex i and j are connected, and which has a 0 in that entry otherwise. For d-regular graphs,

A = L+ dI,

which means that the eigenvalues α1 ≥ · · · ≥ αn of A are exactly the same as the eigenvalues of L, but
just shifted by d. So the highest eigenvalue of A is α1 = d, and the second-highest is α2 = λ2+d. The
spectral gap is still the difference between the top two eigenvalues, but often people just refer to the
second-highest eigenvalue of the adjacency matrix α2 as the “top of the spectrum” of the adjacency
matrix (or something like that).

This number α2 is still a good measure of the connectivity of G, but now as α2 increases, the
connectivity decreases. A d-regular graph is disconnected if and only if α2 = d. By the way, d is also
the operator norm of A.

One reason we want to switch the notation at this point is that the adjacency matrix carries a
lot of useful combinatorial information. For example, the (i, j) entry of Ak is exactly the number of
length-k paths from vertex i to vertex j in G. Also, A d-regular graph is bipartite if and only if the
lowest eigenvalue αn of A, is equal to −d, since in this case the function which is positive on one part
and negative on the other is an eigenvector for this eigenvalue.
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2.3 Proof of the Alon-Boppana Bound

We will actually prove a slightly weaker statement, but this proof allows us to see where the 2
√
d− 1

comes from more easily. By the way, this proof is almost directly copied from the page for “Alon-
Boppana bound” on Wikipedia.

Theorem. Let α(G) = max(|α2(G)|, |αn(G)|). If (Gn) is a sequence of d-regular graphs, then

lim inf
n→∞

α(Gn) ≥ 2
√
d− 1.

Proof. Pick k ∈ N. The number of closed walks of length 2k in Gn is

tr(A(Gn)
2k) =

n∑
i=1

αi(Gn)
2k ≤ d2k + n · α(Gn)

2k.

However, the number of closed walks of length 2k starting from a fixed vertex in in Gn is at most the
corresponding number for the d-regular tree, because the d-regular tree covers Gn. The number of
returning walks of length 2k in the d-regular tree is at least

Ck · (d− 1)k, where Ck =
1

k + 1

(
2k

k

)
is the kth Catalan number. To see this, notice that a returning path in the d-regular tree can be
“projected” down to a returning path in N, by considering the path’s distance from it’s starting point.
The number of returning paths of length 2k in N is exactly Ck. Given a returning path in N, to
create a returning path in the d-regular tree, you just need to pick which directions to go when you
are moving away from the starting point. There are exactly k steps where you move away, and at
each step you have at least d − 1 choices (sometimes you will have d choices, if you are standing at
the starting point). Anyway, it follows that

tr(A(Gn)
2k) ≥ n

1

k + 1

(
2k

k

)
(d− 1)k,

and so

α(Gn)
2k ≥ 1

k + 1

(
2k

k

)
(d− 1)k − d2k

n
.

Now, as you can prove with Stirling’s formula, as k → ∞ we have(
2k

k

)
∼ 22k√

nπ
.

If we let both n and k go to infinity but ensure that k ≪ log(n), then we find that

α(Gn) ≥ 2
√
d− 1− o(1),

and this is equivalent to what we want to prove.
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3 Ramanujan and Almost-Ramanujan Graphs

Again, a Ramanujan graph is a regular graph whose spectral gap is almost as large as possible. In
our new notation, a Ramanujan graph is a d-regular graph G such that α2(G) ≤ 2

√
d− 1.

3.1 Ramanujan Graphs: Past and Future

The first examples of Ramanujan graphs come from a number-theoretic construction, and used the
Ramanujan conjecture, which is what led to the name.

Theorem (Lubotzky, Phillips, Sarnak; Margulis; 1988). There exists an infinite family of (p + 1)-
regular Ramanujan graphs, whenever p is prime and p ≡ 1 mod 4.

Construction Sketch. Let q ≡ 1 mod 4 be a prime not equal to p. By Jacobi’s four-square theorem,
there are p+ 1 solutions to the equation

p = a20 + a21 + a22 + a23,

where a0 > 0 is odd and a1, a2, a3 are even. To each such solution associate the PGL(2,Z/qZ) matrix(
a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

)
, where i is a fixed solution to i2 ≡ −1 mod q.

If p is a quadratic residue modulo q, let Xp,q be the Cayley graph of PGL(2,Z/qZ) with these p+ 1
generators, and otherwise let Xp,q be the cayley graph of PSL(2,Z/qZ) with the same generators.
Then Xp,q is a (p+ 1)-regular Ramanujan graph on n = q(q2 − 1) or q(q2 − 1)/2 vertices (depending
on whether or not p is a quadratic residue modulo q).

Later, this construction was extended to prime powers.

Theorem (Morgenstern; 1994). There exists an infinite family of (q+1)-regular Ramanujan graphs,
whenever q is a prime power and q ≡ 1 mod 4.

More recently, a separate construction via the probabilistic method was used to show the existence
of bipartite Ramanujan graphs of all degrees and all sizes.

Theorem (Marcus, Spielman, Srivastava; 2013). For any d ≥ 3 and any n ≥ d + 1, there exists a
d-regular bipartite Ramanujan graph with n vertices.

However, the bipartiteness means these graphs are Ramanujan in a weaker sense—they are not
exceptional from the point of view of the weaker version of the Alon-Boppana bound which we proved
in section 2.3 above, since all of their lowest eigenvalues are equal to −d. The question of whether
there are Ramanujan graphs of every degree which are not bipartite is still open.

3.2 Random Regular Graphs

What are some examples of d-regular graphs? Well, one (cheap) way to get d-regular graphs is to
generate them randomly. For instance, one might ask for a d-regular graph chosen uniformly among all
d-regular graphs on n nodes. But how can one actually generate such a random graph on a computer?

The configuration model is a random algorithm for constructing a d-regular graph, and it gives
an approximation to the uniformly random d-regular graph on n nodes. First, start with n nodes,
and attach d half-edges to each one. Then choose a random pairing of all of the half-edges, and join
paired half-edges to form a full edge. One way to choose a pairing is just to go one-by-one through
the unjoined half-edges, choose a random unjoined half-edge, and join the two.

If you do this, you might notice that it’s possible to get self-loops and multiple edges, which we
would prefer to avoid. but, the good news is that the probability of getting too many self-loops or
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multiple edges is very low, even as n → ∞. In fact, for all n, there is a uniformly positive probability
that there will be no self-loops or multiple edges in the graph resulting from the configuration model.

If we condition on this positive-probability event, then we actually recover the uniform random
d-regular graph on n nodes. Because of this, any statement that holds with asymptotic probability 1
for the configuration model also holds with asymptotic probability 1 for the uniform random d-regular
graph, and vice versa.

By the way, the proof that there are few self-loops and multiple edges works in greater generality
to show that there are also very few short cycles in a random regular graph. Informally, a random
d-regular graph looks locally like a tree. More formally (but perhaps unhelpfully), growing random
d-regular graphs converge to the infinite d-regular tree (in the sense of Benjamini and Schramm).
More precisely, for any integer k, the proportion of nodes in a random d-regular graph which are part
of a k-cycle goes to zero (almost surely) in any sequence of growing random d-regular graphs.

Perhaps that makes the following theorem easier to believe:

Theorem (Friedman; 2003). If (Gn) is a sequence of uniformly random d-regular graphs on n vertices
(or 2n vertices if d is odd), then with probability 1, we have

lim
n→∞

sg(Gn) = d− 2
√
d− 1, or equivalently, lim

n→∞
α2(Gn) = 2

√
d− 1.

It was originally conjectured by Alon in 1986. The proof is over 100 pages and is quite complicated.
However, with the intuition that random regular graphs are locally tree-like, combined with knowledge
of the proof of the Alon-Boppana bound which compares a regular graph to the regular tree in a local
way, it is at least believable.
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