# What is the Limit of a Sequence of Graphs? 

Vilas Winstein

June 22, 2021

## Why is...?

## Why is...?

Why would you want to take the limit of a sequence of graphs?

## Why is...?

Why would you want to take the limit of a sequence of graphs?
Solving optimization problems:

## Why is...?

Why would you want to take the limit of a sequence of graphs?

Solving optimization problems: There are no rational numbers $x$ which minimize $x^{3}-6 x$ over $x \geq 0$.

## Why is...?

Why would you want to take the limit of a sequence of graphs?

Solving optimization problems: There are no rational numbers $x$ which minimize $x^{3}-6 x$ over $x \geq 0$. But $\sqrt{2}$, a real number, does.

## Why is...?

Why would you want to take the limit of a sequence of graphs?

Solving optimization problems: There are no rational numbers $x$ which minimize $x^{3}-6 x$ over $x \geq 0$. But $\sqrt{2}$, a real number, does.

Similarly, there is no graph with edge-density $\frac{1}{2}$ which minimizes the density of 4-cycles.

## Why is...?

Why would you want to take the limit of a sequence of graphs?

Solving optimization problems: There are no rational numbers $x$ which minimize $x^{3}-6 x$ over $x \geq 0$. But $\sqrt{2}$, a real number, does.

Similarly, there is no graph with edge-density $\frac{1}{2}$ which minimizes the density of 4-cycles. But there is a graphon which does.

## Why is...?

Why would you want to take the limit of a sequence of graphs?

Solving optimization problems: There are no rational numbers $x$ which minimize $x^{3}-6 x$ over $x \geq 0$. But $\sqrt{2}$, a real number, does.

Similarly, there is no graph with edge-density $\frac{1}{2}$ which minimizes the density of 4-cycles. But there is a graphon which does.

Proving asymptotic results:

## Why is...?

Why would you want to take the limit of a sequence of graphs?

Solving optimization problems: There are no rational numbers $x$ which minimize $x^{3}-6 x$ over $x \geq 0$. But $\sqrt{2}$, a real number, does.

Similarly, there is no graph with edge-density $\frac{1}{2}$ which minimizes the density of 4-cycles. But there is a graphon which does.

Proving asymptotic results: There are many asymptotic results about rational numbers that can be proved with the aid of the real numbers.

## Why is...?

Why would you want to take the limit of a sequence of graphs?

Solving optimization problems: There are no rational numbers $x$ which minimize $x^{3}-6 x$ over $x \geq 0$. But $\sqrt{2}$, a real number, does.

Similarly, there is no graph with edge-density $\frac{1}{2}$ which minimizes the density of 4-cycles. But there is a graphon which does.

Proving asymptotic results: There are many asymptotic results about rational numbers that can be proved with the aid of the real numbers.

Similarly, for example, using bounded-degree graph limits, one can prove that (finite) Ramanujan graphs have essentially large girth.

## Why is...?

Why would you want to take the limit of a sequence of graphs?

Solving optimization problems: There are no rational numbers $x$ which minimize $x^{3}-6 x$ over $x \geq 0$. But $\sqrt{2}$, a real number, does.

Similarly, there is no graph with edge-density $\frac{1}{2}$ which minimizes the density of 4-cycles. But there is a graphon which does.

Proving asymptotic results: There are many asymptotic results about rational numbers that can be proved with the aid of the real numbers.

Similarly, for example, using bounded-degree graph limits, one can prove that (finite) Ramanujan graphs have essentially large girth. et cetera.

## Why is...?

Why would you want to take the limit of a sequence of graphs?

Solving optimization problems: There are no rational numbers $x$ which minimize $x^{3}-6 x$ over $x \geq 0$. But $\sqrt{2}$, a real number, does.

Similarly, there is no graph with edge-density $\frac{1}{2}$ which minimizes the density of 4-cycles. But there is a graphon which does.

Proving asymptotic results: There are many asymptotic results about rational numbers that can be proved with the aid of the real numbers.

Similarly, for example, using bounded-degree graph limits, one can prove that (finite) Ramanujan graphs have essentially large girth. et cetera.

Generally, we know that it is nice to be able to embed a space you care about into a complete space,

## Why is...?

Why would you want to take the limit of a sequence of graphs?

Solving optimization problems: There are no rational numbers $x$ which minimize $x^{3}-6 x$ over $x \geq 0$. But $\sqrt{2}$, a real number, does.

Similarly, there is no graph with edge-density $\frac{1}{2}$ which minimizes the density of 4-cycles. But there is a graphon which does.

Proving asymptotic results: There are many asymptotic results about rational numbers that can be proved with the aid of the real numbers.

Similarly, for example, using bounded-degree graph limits, one can prove that (finite) Ramanujan graphs have essentially large girth. et cetera.

Generally, we know that it is nice to be able to embed a space you care about into a complete space, in a way that preserves some structure.

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures.

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures. This turns into...
(Late 1990s-Early 2000s) Itai Benjamini and Oded Schramm (among others) formulate convergence of graph sequences with bounded degree.

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures. This turns into...
(Late 1990s-Early 2000s) Itai Benjamini and Oded Schramm (among others) formulate convergence of graph sequences with bounded degree. This is the formulation with which we will spend the most time today.

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures. This turns into...
(Late 1990s-Early 2000s) Itai Benjamini and Oded Schramm (among others) formulate convergence of graph sequences with bounded degree. This is the formulation with which we will spend the most time today.
(Mid 2000s-Late 2000s) László Lovász (among many others) formulates convergence of dense graph sequences (Graphons).

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures. This turns into...
(Late 1990s-Early 2000s) Itai Benjamini and Oded Schramm (among others) formulate convergence of graph sequences with bounded degree. This is the formulation with which we will spend the most time today.
(Mid 2000s-Late 2000s) László Lovász (among many others) formulates convergence of dense graph sequences (Graphons). This is the most fully-developed theory, and the easiest to introduce.

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures. This turns into...
(Late 1990s-Early 2000s) Itai Benjamini and Oded Schramm (among others) formulate convergence of graph sequences with bounded degree. This is the formulation with which we will spend the most time today.
(Mid 2000s-Late 2000s) László Lovász (among many others) formulates convergence of dense graph sequences (Graphons). This is the most fully-developed theory, and the easiest to introduce. So we will start here.

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures. This turns into...
(Late 1990s-Early 2000s) Itai Benjamini and Oded Schramm (among others) formulate convergence of graph sequences with bounded degree. This is the formulation with which we will spend the most time today.
(Mid 2000s-Late 2000s) László Lovász (among many others) formulates convergence of dense graph sequences (Graphons). This is the most fully-developed theory, and the easiest to introduce. So we will start here.
(2010s-Present) Details of both theories (and others) are worked out.

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures. This turns into...
(Late 1990s-Early 2000s) Itai Benjamini and Oded Schramm (among others) formulate convergence of graph sequences with bounded degree. This is the formulation with which we will spend the most time today.
(Mid 2000s-Late 2000s) László Lovász (among many others) formulates convergence of dense graph sequences (Graphons). This is the most fully-developed theory, and the easiest to introduce. So we will start here.
(2010s-Present) Details of both theories (and others) are worked out. There is still many questions to answer in both theories

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures. This turns into...
(Late 1990s-Early 2000s) Itai Benjamini and Oded Schramm (among others) formulate convergence of graph sequences with bounded degree. This is the formulation with which we will spend the most time today.
(Mid 2000s-Late 2000s) László Lovász (among many others) formulates convergence of dense graph sequences (Graphons). This is the most fully-developed theory, and the easiest to introduce. So we will start here.
(2010s-Present) Details of both theories (and others) are worked out. There is still many questions to answer in both theories (perhaps more in the bounded-degree case).

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures. This turns into...
(Late 1990s-Early 2000s) Itai Benjamini and Oded Schramm (among others) formulate convergence of graph sequences with bounded degree. This is the formulation with which we will spend the most time today.
(Mid 2000s-Late 2000s) László Lovász (among many others) formulates convergence of dense graph sequences (Graphons). This is the most fully-developed theory, and the easiest to introduce. So we will start here.
(2010s-Present) Details of both theories (and others) are worked out. There is still many questions to answer in both theories (perhaps more in the bounded-degree case). And there is still no theory which unifies the above theories,

## A brief (and vague) history

(1980s-1990s) David Aldous (among others) begin to examine weak local limits of various combinatorial structures. This turns into...
(Late 1990s-Early 2000s) Itai Benjamini and Oded Schramm (among others) formulate convergence of graph sequences with bounded degree. This is the formulation with which we will spend the most time today.
(Mid 2000s-Late 2000s) László Lovász (among many others) formulates convergence of dense graph sequences (Graphons). This is the most fully-developed theory, and the easiest to introduce. So we will start here.
(2010s-Present) Details of both theories (and others) are worked out. There is still many questions to answer in both theories (perhaps more in the bounded-degree case). And there is still no theory which unifies the above theories, although some researchers think such a theory is possible.

## Graphons

## Graphons

One way to represent a graph is with an adjacency matrix:

## Graphons

One way to represent a graph is with an adjacency matrix:


## Graphons

One way to represent a graph is with an adjacency matrix:


## Graphons

One way to represent a graph is with an adjacency matrix:


## Graphons

One way to represent a graph is with an adjacency matrix:


This last picture can now be thought of as a function $[0,1]^{2} \rightarrow[0,1]$

## Graphons

One way to represent a graph is with an adjacency matrix:


This last picture can now be thought of as a function $[0,1]^{2} \rightarrow[0,1]$ (of course, it only takes values in $\{0,1\}$ ).

## Graphons

One way to represent a graph is with an adjacency matrix:


This last picture can now be thought of as a function $[0,1]^{2} \rightarrow[0,1]$ (of course, it only takes values in $\{0,1\}$ ). With this interpretation, the $y$-axis goes down instead of up, to agree with the convention of matrix indices.

## Graphons

One way to represent a graph is with an adjacency matrix:


This last picture can now be thought of as a function $[0,1]^{2} \rightarrow[0,1]$ (of course, it only takes values in $\{0,1\}$ ). With this interpretation, the $y$-axis goes down instead of up, to agree with the convention of matrix indices. So the set of graphs is embedded in a set of functions $[0,1]^{2} \rightarrow[0,1]$.

## Graphons

Let's look at some examples.

## Graphons

Let's look at some examples. Here is a random graph where each edge has probability $\frac{1}{2}$ of existing

## Graphons

Let's look at some examples. Here is a random graph where each edge has probability $\frac{1}{2}$ of existing (this is the Erdős-Rényi model $\mathbb{G}\left(n, \frac{1}{2}\right)$ ):

## Graphons

Let's look at some examples. Here is a random graph where each edge has probability $\frac{1}{2}$ of existing (this is the Erdős-Rényi model $\mathbb{G}\left(n, \frac{1}{2}\right)$ ):


## Graphons

Let's look at some examples. Here is a random graph where each edge has probability $\frac{1}{2}$ of existing (this is the Erdős-Rényi model $\mathbb{G}\left(n, \frac{1}{2}\right)$ ):

with 32 vertices

## Graphons

Let's look at some examples. Here is a random graph where each edge has probability $\frac{1}{2}$ of existing (this is the Erdős-Rényi model $\mathbb{G}\left(n, \frac{1}{2}\right)$ ):


## Graphons

Let's look at some examples. Here is a random graph where each edge has probability $\frac{1}{2}$ of existing (this is the Erdős-Rényi model $\mathbb{G}\left(n, \frac{1}{2}\right)$ ):


## Graphons

Let's look at some examples. Here is a random graph where each edge has probability $\frac{1}{2}$ of existing (this is the Erdős-Rényi model $\mathbb{G}\left(n, \frac{1}{2}\right)$ ):


## Graphons

Let's look at some examples. Here is a random graph where each edge has probability $\frac{1}{2}$ of existing (this is the Erdős-Rényi model $\mathbb{G}\left(n, \frac{1}{2}\right)$ ):


## Graphons

Let's look at some examples. Here is a random graph where each edge has probability $\frac{1}{2}$ of existing (this is the Erdős-Rényi model $\mathbb{G}\left(n, \frac{1}{2}\right)$ ):


The limit object is a function $[0,1]^{2} \rightarrow[0,1]$ which does not come from any finite graph,

## Graphons

Let's look at some examples. Here is a random graph where each edge has probability $\frac{1}{2}$ of existing (this is the Erdős-Rényi model $\mathbb{G}\left(n, \frac{1}{2}\right)$ ):


The limit object is a function $[0,1]^{2} \rightarrow[0,1]$ which does not come from any finite graph, since it takes values outside of $\{0,1\}$.

## Graphons

Here's a more complicated example.

## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step.

## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.

## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


The notion of convergence used here is defined by the cut norm.

## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


The notion of convergence used here is defined by the cut norm. This defines a topology on the space of Graphons (from "graph functions").

## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


The notion of convergence used here is defined by the cut norm. This defines a topology on the space of Graphons (from "graph functions"). This convergence is not the same as pointwise convergence,

## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


The notion of convergence used here is defined by the cut norm. This defines a topology on the space of Graphons (from "graph functions"). This convergence is not the same as pointwise convergence, or convergence in $L^{1}\left([0,1]^{2}\right)$,

## Graphons

Here's a more complicated example. Let's grow a graph by starting with a node, and adding a new node at every step. On the $n^{\text {th }}$ step, we will also connect every pair of existing vertices with probability $\frac{1}{n}$ for each pair.


The notion of convergence used here is defined by the cut norm. This defines a topology on the space of Graphons (from "graph functions"). This convergence is not the same as pointwise convergence, or convergence in $L^{1}\left([0,1]^{2}\right)$, or any other type of convergence covered in $6211 / 6212$.

## Graphons

We can also sample a finite graph (with $n$ vertices) from a graphon.


## Graphons

We can also sample a finite graph (with $n$ vertices) from a graphon. First, pick $n$ points uniformly at random in $[0,1]$, to be the vertices of the graph.


## Graphons

We can also sample a finite graph (with $n$ vertices) from a graphon. First, pick $n$ points uniformly at random in $[0,1]$, to be the vertices of the graph. Then connect vertices $v_{i}$ and $v_{j}$ with probability $f\left(v_{i}, v_{j}\right)$, if $i \neq j$.


## Graphons

We can also sample a finite graph (with $n$ vertices) from a graphon. First, pick $n$ points uniformly at random in $[0,1]$, to be the vertices of the graph. Then connect vertices $v_{i}$ and $v_{j}$ with probability $f\left(v_{i}, v_{j}\right)$, if $i \neq j$.


## Graphons

We can also sample a finite graph (with $n$ vertices) from a graphon. First, pick $n$ points uniformly at random in $[0,1]$, to be the vertices of the graph. Then connect vertices $v_{i}$ and $v_{j}$ with probability $f\left(v_{i}, v_{j}\right)$, if $i \neq j$.


## Graphons

We can also sample a finite graph (with $n$ vertices) from a graphon. First, pick $n$ points uniformly at random in $[0,1]$, to be the vertices of the graph. Then connect vertices $v_{i}$ and $v_{j}$ with probability $f\left(v_{i}, v_{j}\right)$, if $i \neq j$.


As $n \rightarrow \infty$, the sequence of sampled graphs will (almost surely) converge (in the cut norm topology) to the graphon we started with.

## Graphons

The space of graphons, with the cut norm topology, is compact.

## Graphons

The space of graphons, with the cut norm topology, is compact. This is nice for showing that extremal graphons exist, among many other things.

## Graphons

The space of graphons, with the cut norm topology, is compact. This is nice for showing that extremal graphons exist, among many other things.

Additionally, the set of finite graphs is dense in the space of graphons.

## Graphons

The space of graphons, with the cut norm topology, is compact. This is nice for showing that extremal graphons exist, among many other things.

Additionally, the set of finite graphs is dense in the space of graphons. By sampling from a graphon, we obtain finite graphs which approximate it.

## Graphons

The space of graphons, with the cut norm topology, is compact. This is nice for showing that extremal graphons exist, among many other things.

Additionally, the set of finite graphs is dense in the space of graphons. By sampling from a graphon, we obtain finite graphs which approximate it.

And because of the way graphons are defined (as functions), many well-established tools from functional analysis can be put to good use here.

## Graphons

The space of graphons, with the cut norm topology, is compact. This is nice for showing that extremal graphons exist, among many other things.

Additionally, the set of finite graphs is dense in the space of graphons. By sampling from a graphon, we obtain finite graphs which approximate it.

And because of the way graphons are defined (as functions), many well-established tools from functional analysis can be put to good use here.

However, there is one big problem...

## Graphons

The space of graphons, with the cut norm topology, is compact. This is nice for showing that extremal graphons exist, among many other things.

Additionally, the set of finite graphs is dense in the space of graphons. By sampling from a graphon, we obtain finite graphs which approximate it.

And because of the way graphons are defined (as functions), many well-established tools from functional analysis can be put to good use here.

However, there is one big problem... Graphons only capture properties of dense graphs, with $\Omega\left(n^{2}\right)$ edges.

## Graphons

The space of graphons, with the cut norm topology, is compact. This is nice for showing that extremal graphons exist, among many other things.

Additionally, the set of finite graphs is dense in the space of graphons. By sampling from a graphon, we obtain finite graphs which approximate it.

And because of the way graphons are defined (as functions), many well-established tools from functional analysis can be put to good use here.

However, there is one big problem... Graphons only capture properties of dense graphs, with $\Omega\left(n^{2}\right)$ edges. Most real-world graphs are sparse, and often even have $O(n)$ edges.

## Graphons

The space of graphons, with the cut norm topology, is compact. This is nice for showing that extremal graphons exist, among many other things.

Additionally, the set of finite graphs is dense in the space of graphons. By sampling from a graphon, we obtain finite graphs which approximate it.

And because of the way graphons are defined (as functions), many well-established tools from functional analysis can be put to good use here.

However, there is one big problem... Graphons only capture properties of dense graphs, with $\Omega\left(n^{2}\right)$ edges. Most real-world graphs are sparse, and often even have $O(n)$ edges. Any sequence of sparse graphs will converge in the cut norm to the 0 graphon.

## Graphons

The space of graphons, with the cut norm topology, is compact. This is nice for showing that extremal graphons exist, among many other things.

Additionally, the set of finite graphs is dense in the space of graphons. By sampling from a graphon, we obtain finite graphs which approximate it.

And because of the way graphons are defined (as functions), many well-established tools from functional analysis can be put to good use here.

However, there is one big problem... Graphons only capture properties of dense graphs, with $\Omega\left(n^{2}\right)$ edges. Most real-world graphs are sparse, and often even have $O(n)$ edges. Any sequence of sparse graphs will converge in the cut norm to the 0 graphon. This is not very useful or interesting.

## What about sparse graphs?

For sparse graphs, we will try an entirely different approach.

## What about sparse graphs?

For sparse graphs, we will try an entirely different approach. First, we will only consider graphs which are somehow the sparsest possible connected graphs.

## What about sparse graphs?

For sparse graphs, we will try an entirely different approach. First, we will only consider graphs which are somehow the sparsest possible connected graphs. Namely, we will only consider graphs with a uniform degree bound.

## What about sparse graphs?

For sparse graphs, we will try an entirely different approach. First, we will only consider graphs which are somehow the sparsest possible connected graphs. Namely, we will only consider graphs with a uniform degree bound.

Let $D \geq 2$ be a positive integer.

## What about sparse graphs?

For sparse graphs, we will try an entirely different approach. First, we will only consider graphs which are somehow the sparsest possible connected graphs. Namely, we will only consider graphs with a uniform degree bound.

Let $D \geq 2$ be a positive integer. We will only consider graphs where each vertex has at most $D$ neighbors.

## What about sparse graphs?

For sparse graphs, we will try an entirely different approach. First, we will only consider graphs which are somehow the sparsest possible connected graphs. Namely, we will only consider graphs with a uniform degree bound.

Let $D \geq 2$ be a positive integer. We will only consider graphs where each vertex has at most $D$ neighbors. We will also consider rooted graphs to begin with.

## What about sparse graphs?

For sparse graphs, we will try an entirely different approach. First, we will only consider graphs which are somehow the sparsest possible connected graphs. Namely, we will only consider graphs with a uniform degree bound.

Let $D \geq 2$ be a positive integer. We will only consider graphs where each vertex has at most $D$ neighbors. We will also consider rooted graphs to begin with. Let $\mathcal{G}_{D}^{\bullet}$ denote the space of (isomorphism classes of) rooted graphs with degree bound $D$.

## What about sparse graphs?

For sparse graphs, we will try an entirely different approach. First, we will only consider graphs which are somehow the sparsest possible connected graphs. Namely, we will only consider graphs with a uniform degree bound.

Let $D \geq 2$ be a positive integer. We will only consider graphs where each vertex has at most $D$ neighbors. We will also consider rooted graphs to begin with. Let $\mathcal{G}_{D}^{\bullet}$ denote the space of (isomorphism classes of) rooted graphs with degree bound $D$. For example, here is an element of $\mathcal{G}_{4}^{\bullet}$ :


## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology.

## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology. The idea is that the structure of the graph near the root is the most important.

## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology. The idea is that the structure of the graph near the root is the most important.

For $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ ( $\rho$ is the root), and $r$ a positive integer (the radius),

## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology. The idea is that the structure of the graph near the root is the most important.

For $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ ( $\rho$ is the root), and $r$ a positive integer (the radius), we define the $r$-ball of $(G, \rho)$ as the subgraph of $G$ induced by all vertices with distance at most $r$ from $\rho$.

## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology. The idea is that the structure of the graph near the root is the most important.

For $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ ( $\rho$ is the root), and $r$ a positive integer (the radius), we define the $r$-ball of $(G, \rho)$ as the subgraph of $G$ induced by all vertices with distance at most $r$ from $\rho$. Here is an example:

## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology. The idea is that the structure of the graph near the root is the most important.

For $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ ( $\rho$ is the root), and $r$ a positive integer (the radius), we define the $r$-ball of $(G, \rho)$ as the subgraph of $G$ induced by all vertices with distance at most $r$ from $\rho$. Here is an example:

$$
\text { with } r=1 \text {. }
$$

## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology. The idea is that the structure of the graph near the root is the most important.

For $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ ( $\rho$ is the root), and $r$ a positive integer (the radius), we define the $r$-ball of $(G, \rho)$ as the subgraph of $G$ induced by all vertices with distance at most $r$ from $\rho$. Here is an example:


$$
\text { with } r=2 \text {. }
$$

## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology. The idea is that the structure of the graph near the root is the most important.

For $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ ( $\rho$ is the root), and $r$ a positive integer (the radius), we define the $r$-ball of $(G, \rho)$ as the subgraph of $G$ induced by all vertices with distance at most $r$ from $\rho$. Here is an example:

with $r=3$.

## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology. The idea is that the structure of the graph near the root is the most important.

For $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ ( $\rho$ is the root), and $r$ a positive integer (the radius), we define the $r$-ball of $(G, \rho)$ as the subgraph of $G$ induced by all vertices with distance at most $r$ from $\rho$. Here is an example:

with $r=4$.

## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology. The idea is that the structure of the graph near the root is the most important.

For $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ ( $\rho$ is the root), and $r$ a positive integer (the radius), we define the $r$-ball of $(G, \rho)$ as the subgraph of $G$ induced by all vertices with distance at most $r$ from $\rho$. Here is an example:


$$
\text { with } r=5 \text {. }
$$

## Local convergence of rooted graphs

We will put a topology on $\mathcal{G}_{D}^{\bullet}$, called the local topology. The idea is that the structure of the graph near the root is the most important.

For $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ ( $\rho$ is the root), and $r$ a positive integer (the radius), we define the $r$-ball of $(G, \rho)$ as the subgraph of $G$ induced by all vertices with distance at most $r$ from $\rho$. Here is an example:

with $r=5$.

Note that we still keep track of the original root in the $r$-balls.

## Local convergence of rooted graphs

Now we define a metric $d_{\text {local }}$ on $\mathcal{G}_{D}^{\bullet}$.

## Local convergence of rooted graphs

Now we define a metric $d_{\text {local }}$ on $\mathcal{G}_{D}^{\bullet}$. If $(G, \rho)$ and $\left(G^{\prime}, \rho^{\prime}\right)$ are two distinct rooted graphs, then there is some minimal radius $r$ such that

$$
B_{r}(G, \rho) \neq B_{r}\left(G^{\prime}, \rho^{\prime}\right)
$$

## Local convergence of rooted graphs

Now we define a metric $d_{\text {local }}$ on $\mathcal{G}_{D}^{\bullet}$. If $(G, \rho)$ and $\left(G^{\prime}, \rho^{\prime}\right)$ are two distinct rooted graphs, then there is some minimal radius $r$ such that

$$
B_{r}(G, \rho) \neq B_{r}\left(G^{\prime}, \rho^{\prime}\right)
$$

Let $d_{\text {local }}\left((G, \rho),\left(G^{\prime}, \rho^{\prime}\right)\right)=\frac{1}{2^{r}}$.

## Local convergence of rooted graphs

Now we define a metric $d_{\text {local }}$ on $\mathcal{G}_{D}^{\bullet}$. If $(G, \rho)$ and $\left(G^{\prime}, \rho^{\prime}\right)$ are two distinct rooted graphs, then there is some minimal radius $r$ such that

$$
B_{r}(G, \rho) \neq B_{r}\left(G^{\prime}, \rho^{\prime}\right)
$$

Let $d_{\text {local }}\left((G, \rho),\left(G^{\prime}, \rho^{\prime}\right)\right)=\frac{1}{2^{r}}$. For example,

$$
d_{\text {local }}\left(\begin{array}{llll}
0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\frac{1}{2},
$$

## Local convergence of rooted graphs

Now we define a metric $d_{\text {local }}$ on $\mathcal{G}_{D}^{\bullet}$. If $(G, \rho)$ and $\left(G^{\prime}, \rho^{\prime}\right)$ are two distinct rooted graphs, then there is some minimal radius $r$ such that

$$
B_{r}(G, \rho) \neq B_{r}\left(G^{\prime}, \rho^{\prime}\right)
$$

Let $d_{\text {local }}\left((G, \rho),\left(G^{\prime}, \rho^{\prime}\right)\right)=\frac{1}{2^{r}}$. For example,

$$
d_{\text {local }}(0,0)=\frac{1}{2} \text {, and }
$$



## Local convergence of rooted graphs

Now we define a metric $d_{\text {local }}$ on $\mathcal{G}_{D}^{\bullet}$. If $(G, \rho)$ and $\left(G^{\prime}, \rho^{\prime}\right)$ are two distinct rooted graphs, then there is some minimal radius $r$ such that

$$
B_{r}(G, \rho) \neq B_{r}\left(G^{\prime}, \rho^{\prime}\right)
$$

Let $d_{\text {local }}\left((G, \rho),\left(G^{\prime}, \rho^{\prime}\right)\right)=\frac{1}{2^{r}}$. For example,

$$
d_{\text {local }}(0,0)=\frac{1}{2} \text {, and }
$$



By the way, if ( $G, \rho$ ) and $\left(G^{\prime}, \rho^{\prime}\right)$ are equal (isomorphic as rooted graphs), then their distance is 0 .

## Local convergence of rooted graphs

The metric space $\left(\mathcal{G}_{D}^{\bullet}, d_{\text {local }}\right)$ is compact.

## Local convergence of rooted graphs

The metric space $\left(\mathcal{G}_{D}^{\bullet}, d_{\text {local }}\right)$ is compact. In fact, it is a Cantor space.

## Local convergence of rooted graphs

The metric space $\left(\mathcal{G}_{D}^{\bullet}, d_{\text {local }}\right)$ is compact. In fact, it is a Cantor space. To see that it is compact, we show that it is complete and totally bounded.

## Local convergence of rooted graphs

The metric space $\left(\mathcal{G}_{D}^{\bullet}, d_{\text {local }}\right)$ is compact. In fact, it is a Cantor space. To see that it is compact, we show that it is complete and totally bounded.

For completeness, note that if a sequence $\left(G_{n}, \rho_{n}\right)$ is Cauchy, then for every radius $r$, the $r$-balls $B_{r}\left(G_{n}, \rho_{n}\right)$ are eventually constant.

## Local convergence of rooted graphs

The metric space $\left(\mathcal{G}_{D}^{\bullet}, d_{\text {local }}\right)$ is compact. In fact, it is a Cantor space. To see that it is compact, we show that it is complete and totally bounded.

For completeness, note that if a sequence $\left(G_{n}, \rho_{n}\right)$ is Cauchy, then for every radius $r$, the $r$-balls $B_{r}\left(G_{n}, \rho_{n}\right)$ are eventually constant. So we can define a limiting graph whose $r$-ball is this constant graph, for every $r$

## Local convergence of rooted graphs

The metric space $\left(\mathcal{G}_{D}^{\bullet}, d_{\text {local }}\right)$ is compact. In fact, it is a Cantor space. To see that it is compact, we show that it is complete and totally bounded.

For completeness, note that if a sequence $\left(G_{n}, \rho_{n}\right)$ is Cauchy, then for every radius $r$, the $r$-balls $B_{r}\left(G_{n}, \rho_{n}\right)$ are eventually constant. So we can define a limiting graph whose $r$-ball is this constant graph, for every $r$ (note that $\mathcal{G}_{D}^{\bullet}$ does not exclude infinite graphs).

## Local convergence of rooted graphs

The metric space $\left(\mathcal{G}_{D}^{\bullet}, d_{\text {local }}\right)$ is compact. In fact, it is a Cantor space. To see that it is compact, we show that it is complete and totally bounded.

For completeness, note that if a sequence $\left(G_{n}, \rho_{n}\right)$ is Cauchy, then for every radius $r$, the $r$-balls $B_{r}\left(G_{n}, \rho_{n}\right)$ are eventually constant. So we can define a limiting graph whose $r$-ball is this constant graph, for every $r$ (note that $\mathcal{G}_{D}^{\bullet}$ does not exclude infinite graphs).

For totally boundedness, note that there are only finitely many different graphs $\left(G_{1}^{r}, \rho_{1}^{r}\right), \ldots,\left(G_{k_{r}}^{r}, \rho_{k_{r}}^{r}\right)$ with radius $\leq r($ and degree bound $D)$.

## Local convergence of rooted graphs

The metric space $\left(\mathcal{G}_{D}^{\bullet}, d_{\text {local }}\right)$ is compact. In fact, it is a Cantor space. To see that it is compact, we show that it is complete and totally bounded.

For completeness, note that if a sequence $\left(G_{n}, \rho_{n}\right)$ is Cauchy, then for every radius $r$, the $r$-balls $B_{r}\left(G_{n}, \rho_{n}\right)$ are eventually constant. So we can define a limiting graph whose $r$-ball is this constant graph, for every $r$ (note that $\mathcal{G}_{D}^{\bullet}$ does not exclude infinite graphs).

For totally boundedness, note that there are only finitely many different graphs $\left(G_{1}^{r}, \rho_{1}^{r}\right), \ldots,\left(G_{k_{r}}^{r}, \rho_{k_{r}}^{r}\right)$ with radius $\leq r$ (and degree bound $D$ ). Thus, every $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ satisfies $B_{r}(G, \rho)=\left(G_{i}^{r}, \rho_{i}^{r}\right)$ for some $i \leq k_{r}$.

## Local convergence of rooted graphs

The metric space $\left(\mathcal{G}_{D}^{\bullet}, d_{\text {local }}\right)$ is compact. In fact, it is a Cantor space. To see that it is compact, we show that it is complete and totally bounded.

For completeness, note that if a sequence $\left(G_{n}, \rho_{n}\right)$ is Cauchy, then for every radius $r$, the $r$-balls $B_{r}\left(G_{n}, \rho_{n}\right)$ are eventually constant. So we can define a limiting graph whose $r$-ball is this constant graph, for every $r$ (note that $\mathcal{G}_{D}^{\bullet}$ does not exclude infinite graphs).

For totally boundedness, note that there are only finitely many different graphs $\left(G_{1}^{r}, \rho_{1}^{r}\right), \ldots,\left(G_{k_{r}}^{r}, \rho_{k_{r}}^{r}\right)$ with radius $\leq r$ (and degree bound $D$ ). Thus, every $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ satisfies $B_{r}(G, \rho)=\left(G_{i}^{r}, \rho_{i}^{r}\right)$ for some $i \leq k_{r}$. And the "cylindrical sets" given by

$$
C_{i}^{r}=\left\{(G, \rho) \in \mathcal{G}_{D}^{\bullet}: B_{r}(G, \rho)=\left(G_{i}^{r}, \rho_{i}^{r}\right)\right\}
$$

each have diameter $\frac{1}{2^{r+1}}$.

## Local convergence of rooted graphs

The metric space $\left(\mathcal{G}_{\dot{D}}^{\bullet}, d_{\text {local }}\right)$ is compact. In fact, it is a Cantor space. To see that it is compact, we show that it is complete and totally bounded.

For completeness, note that if a sequence ( $G_{n}, \rho_{n}$ ) is Cauchy, then for every radius $r$, the $r$-balls $B_{r}\left(G_{n}, \rho_{n}\right)$ are eventually constant. So we can define a limiting graph whose $r$-ball is this constant graph, for every $r$ (note that $\mathcal{G}_{\dot{D}}^{\bullet}$ does not exclude infinite graphs).

For totally boundedness, note that there are only finitely many different graphs $\left(G_{1}^{r}, \rho_{1}^{r}\right), \ldots,\left(G_{k_{r}}^{r}, \rho_{k_{r}}^{r}\right)$ with radius $\leq r$ (and degree bound $D$ ). Thus, every $(G, \rho) \in \mathcal{G}_{D}^{\bullet}$ satisfies $B_{r}(G, \rho)=\left(G_{i}^{r}, \rho_{i}^{r}\right)$ for some $i \leq k_{r}$. And the "cylindrical sets" given by

$$
C_{i}^{r}=\left\{(G, \rho) \in \mathcal{G}_{D}^{\bullet}: B_{r}(G, \rho)=\left(G_{i}^{r}, \rho_{i}^{r}\right)\right\}
$$

each have diameter $\frac{1}{2^{r+1}}$. Actually, the collection $\left\{C_{i}^{r}: r \geq 1, i \leq k_{r}\right\}$ of such cylindrical sets forms a clopen basis for the local topology.

## Examples of rooted graph limits

## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits




## Examples of rooted graph limits




## Examples of rooted graph limits



## Examples of rooted graph limits

## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits

## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits

## Bi-infinite path (again)



## Examples of rooted graph limits

## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits

## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## Examples of rooted graph limits



## What about unrooted graphs?

So we have found a nice compact topological space, which is the perfect place to take limits.

## What about unrooted graphs?

So we have found a nice compact topological space, which is the perfect place to take limits. However we have only considered rooted graphs.

## What about unrooted graphs?

So we have found a nice compact topological space, which is the perfect place to take limits. However we have only considered rooted graphs. And we would like to take limits of sequences of unrooted graphs.

## What about unrooted graphs?

So we have found a nice compact topological space, which is the perfect place to take limits. However we have only considered rooted graphs. And we would like to take limits of sequences of unrooted graphs.

For finite graphs, there is a canonical thing to do: take the root uniformly at random.

## What about unrooted graphs?

So we have found a nice compact topological space, which is the perfect place to take limits. However we have only considered rooted graphs. And we would like to take limits of sequences of unrooted graphs.

For finite graphs, there is a canonical thing to do: take the root uniformly at random. This turns a graph into a random rooted graph.

## What about unrooted graphs?

So we have found a nice compact topological space, which is the perfect place to take limits. However we have only considered rooted graphs. And we would like to take limits of sequences of unrooted graphs.

For finite graphs, there is a canonical thing to do: take the root uniformly at random. This turns a graph into a random rooted graph. For example,


## What about unrooted graphs?

So we have found a nice compact topological space, which is the perfect place to take limits. However we have only considered rooted graphs. And we would like to take limits of sequences of unrooted graphs.

For finite graphs, there is a canonical thing to do: take the root uniformly at random. This turns a graph into a random rooted graph. For example,

with probability $\frac{1}{4}$,
with probability $\frac{1}{4}$,
with probability $\frac{1}{4}$,
with probability $\frac{1}{4}$.

## What about unrooted graphs?

So we have found a nice compact topological space, which is the perfect place to take limits. However we have only considered rooted graphs. And we would like to take limits of sequences of unrooted graphs.

For finite graphs, there is a canonical thing to do: take the root uniformly at random. This turns a graph into a random rooted graph. For example,

with probability $\frac{1}{4}$,
with probability $\frac{1}{4}$,
with probability $\frac{1}{2}$.

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$.

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence).

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence). To see this, use Prokhorov's theorem,

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence). To see this, use Prokhorov's theorem, or the Banach-Alaoglu theorem,

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence). To see this, use Prokhorov's theorem, or the Banach-Alaoglu theorem, or Lusin's theorem,

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence). To see this, use Prokhorov's theorem, or the Banach-Alaoglu theorem, or Lusin's theorem, or something else.

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence). To see this, use Prokhorov's theorem, or the Banach-Alaoglu theorem, or Lusin's theorem, or something else.

What is weak*-convergence?

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence). To see this, use Prokhorov's theorem, or the Banach-Alaoglu theorem, or Lusin's theorem, or something else.

What is weak*-convergence? In this context, probability measures $P_{n}$ on $\mathcal{G}_{D}^{\bullet}$ converge to $P$

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence). To see this, use Prokhorov's theorem, or the Banach-Alaoglu theorem, or Lusin's theorem, or something else.

What is weak*-convergence? In this context, probability measures $P_{n}$ on $\mathcal{G}_{D}^{\bullet}$ converge to $P$ (weakly, vaguely, weak*-ly)

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence). To see this, use Prokhorov's theorem, or the Banach-Alaoglu theorem, or Lusin's theorem, or something else.

What is weak*-convergence? In this context, probability measures $P_{n}$ on $\mathcal{G}_{D}^{\bullet}$ converge to $P$ (weakly, vaguely, weak*-ly) if and only if

$$
P_{n}\left(C_{i}^{r}\right) \rightarrow P\left(C_{i}^{r}\right) \quad \text { for all } r \geq 1 \text { and } i \leq k_{r}
$$

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence). To see this, use Prokhorov's theorem, or the Banach-Alaoglu theorem, or Lusin's theorem, or something else.

What is weak*-convergence? In this context, probability measures $P_{n}$ on $\mathcal{G}_{D}^{\bullet}$ converge to $P$ (weakly, vaguely, weak*-ly) if and only if

$$
P_{n}\left(C_{i}^{r}\right) \rightarrow P\left(C_{i}^{r}\right) \quad \text { for all } r \geq 1 \text { and } i \leq k_{r}
$$

This relies on the fact that these cylinder sets form a clopen basis for $\mathcal{G}_{D}^{\bullet}$.

## Random rooted graphs

A random rooted graph is, by definition, a (Borel) probability measure on the (compact) space $\mathcal{G}_{D}^{\bullet}$. The space of such probability measures is compact with respect to weak convergence (also known as vague convergence or weak* convergence). To see this, use Prokhorov's theorem, or the Banach-Alaoglu theorem, or Lusin's theorem, or something else.

What is weak*-convergence? In this context, probability measures $P_{n}$ on $\mathcal{G}_{D}^{\bullet}$ converge to $P$ (weakly, vaguely, weak*-ly) if and only if

$$
P_{n}\left(C_{i}^{r}\right) \rightarrow P\left(C_{i}^{r}\right) \quad \text { for all } r \geq 1 \text { and } i \leq k_{r}
$$

This relies on the fact that these cylinder sets form a clopen basis for $\mathcal{G}_{D}^{\bullet}$. If you're curious about weak convergence of probability measures on other spaces, look up the portmanteau theorem.

## Examples of weak convergence

Let's see what this looks like in practice.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle. In fact, the probability that this happens is exactly $\frac{n-2 k}{n}$ (if $n \geq 2 k$ ),

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle. In fact, the probability that this happens is exactly $\frac{n-2 k}{n}$ (if $n \geq 2 k$ ), which tends to 1 as $n \rightarrow \infty$ (with $k$ fixed).

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle. In fact, the probability that this happens is exactly $\frac{n-2 k}{n}$ (if $n \geq 2 k$ ), which tends to 1 as $n \rightarrow \infty$ (with $k$ fixed). So the limit of this random rooted graph is the following rooted graph

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle. In fact, the probability that this happens is exactly $\frac{n-2 k}{n}$ (if $n \geq 2 k$ ), which tends to 1 as $n \rightarrow \infty$ (with $k$ fixed). So the limit of this random rooted graph is the following rooted graph


## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle. In fact, the probability that this happens is exactly $\frac{n-2 k}{n}$ (if $n \geq 2 k$ ), which tends to 1 as $n \rightarrow \infty$ (with $k$ fixed). So the limit of this random rooted graph is the following rooted graph

with probability 1.

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle. In fact, the probability that this happens is exactly $\frac{n-2 k}{n}$ (if $n \geq 2 k$ ), which tends to 1 as $n \rightarrow \infty$ (with $k$ fixed). So the limit of this random rooted graph is the following rooted graph

with probability 1 . So the limit of the unrooted path graphs is a random rooted graph,

## Examples of weak convergence

Let's see what this looks like in practice. Let $G_{n}$ be the (unrooted) length- $n$ path graph. We turn it into a random rooted graph $\left(G_{n}, \rho_{n}\right)$ by choosing the root $\rho_{n}$ uniformly at random (among the $n$ vertices of $G_{n}$ ).


Notice that the $k$-ball of $\left(G_{n}, \rho_{n}\right)$ is most likely to be the length- $(2 k+1)$ path, rooted in the middle. In fact, the probability that this happens is exactly $\frac{n-2 k}{n}$ (if $n \geq 2 k$ ), which tends to 1 as $n \rightarrow \infty$ (with $k$ fixed). So the limit of this random rooted graph is the following rooted graph

with probability 1 . So the limit of the unrooted path graphs is a random rooted graph, which is almost surely the bi-infinite rooted path.

## Examples of weak convergence

We can do the same thing with the grid graphs

## Examples of weak convergence

We can do the same thing with the grid graphs (i.e. the limit of unrooted grid graphs is the rooted grid which is infinite in all directions,

## Examples of weak convergence

We can do the same thing with the grid graphs (i.e. the limit of unrooted grid graphs is the rooted grid which is infinite in all directions, a.s.).

## Examples of weak convergence

We can do the same thing with the grid graphs (i.e. the limit of unrooted grid graphs is the rooted grid which is infinite in all directions, a.s.).

Intuitively, this is because the boundaries of the grids are "small" relative to the size of the grids.

## Examples of weak convergence

We can do the same thing with the grid graphs (i.e. the limit of unrooted grid graphs is the rooted grid which is infinite in all directions, a.s.).

Intuitively, this is because the boundaries of the grids are "small" relative to the size of the grids. More precisely, the number of bounary vertices in the $n \times n$ grid is $4 n-4$,

## Examples of weak convergence

We can do the same thing with the grid graphs (i.e. the limit of unrooted grid graphs is the rooted grid which is infinite in all directions, a.s.).

Intuitively, this is because the boundaries of the grids are "small" relative to the size of the grids. More precisely, the number of bounary vertices in the $n \times n$ grid is $4 n-4$, and the total number of vertices in the grid is $n^{2}$.

## Examples of weak convergence

We can do the same thing with the grid graphs (i.e. the limit of unrooted grid graphs is the rooted grid which is infinite in all directions, a.s.).

Intuitively, this is because the boundaries of the grids are "small" relative to the size of the grids. More precisely, the number of bounary vertices in the $n \times n$ grid is $4 n-4$, and the total number of vertices in the grid is $n^{2}$.

But what about the binary tree?

## Examples of weak convergence

We can do the same thing with the grid graphs (i.e. the limit of unrooted grid graphs is the rooted grid which is infinite in all directions, a.s.).

Intuitively, this is because the boundaries of the grids are "small" relative to the size of the grids. More precisely, the number of bounary vertices in the $n \times n$ grid is $4 n-4$, and the total number of vertices in the grid is $n^{2}$.

But what about the binary tree? Is there any sequence of unrooted finite graphs whose limit is a.s. the infinite binary tree (rooted at the top)?

## Examples of weak convergence

We can do the same thing with the grid graphs (i.e. the limit of unrooted grid graphs is the rooted grid which is infinite in all directions, a.s.).

Intuitively, this is because the boundaries of the grids are "small" relative to the size of the grids. More precisely, the number of bounary vertices in the $n \times n$ grid is $4 n-4$, and the total number of vertices in the grid is $n^{2}$.

But what about the binary tree? Is there any sequence of unrooted finite graphs whose limit is a.s. the infinite binary tree (rooted at the top)?

A good first guess is that the (finite) complete binary trees (of height $n$ ) tend to this limit.

## Examples of weak convergence

We can do the same thing with the grid graphs (i.e. the limit of unrooted grid graphs is the rooted grid which is infinite in all directions, a.s.).

Intuitively, this is because the boundaries of the grids are "small" relative to the size of the grids. More precisely, the number of bounary vertices in the $n \times n$ grid is $4 n-4$, and the total number of vertices in the grid is $n^{2}$.

But what about the binary tree? Is there any sequence of unrooted finite graphs whose limit is a.s. the infinite binary tree (rooted at the top)?

A good first guess is that the (finite) complete binary trees (of height $n$ ) tend to this limit. But let's try to actually do the calculation...

## Examples of weak convergence

We can do the same thing with the grid graphs (i.e. the limit of unrooted grid graphs is the rooted grid which is infinite in all directions, a.s.).

Intuitively, this is because the boundaries of the grids are "small" relative to the size of the grids. More precisely, the number of bounary vertices in the $n \times n$ grid is $4 n-4$, and the total number of vertices in the grid is $n^{2}$.

But what about the binary tree? Is there any sequence of unrooted finite graphs whose limit is a.s. the infinite binary tree (rooted at the top)?

A good first guess is that the (finite) complete binary trees (of height $n$ ) tend to this limit. But let's try to actually do the calculation...

## Examples of weak convergence

Let's imagine a binary tree with $n$ levels

## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ).


## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices.


## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices. Now notice that the root will be a leaf with probability $\frac{2^{n-1}}{2^{n}-1}$.

## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices. Now notice that the root will be a leaf with probability $\frac{2^{n-1}}{2^{n}-1}$. This tends to $\frac{1}{2}$ as $n \rightarrow \infty$.


## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices. Now notice that the root will be a leaf with probability $\frac{2^{n-1}}{2^{n}-1}$. This tends to $\frac{1}{2}$ as $n \rightarrow \infty$. Similarly, the root will be a neighbor of a leaf with probability tending to $\frac{1}{4}$.

## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices. Now notice that the root will be a leaf with probability $\frac{2^{n-1}}{2^{n}-1}$. This tends to $\frac{1}{2}$ as $n \rightarrow \infty$. Similarly, the root will be a neighbor of a leaf with probability tending to $\frac{1}{4}$. And a grandparent of a leaf with probability tending to $\frac{1}{8}$,


## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices. Now notice that the root will be a leaf with probability $\frac{2^{n-1}}{2^{n}-1}$. This tends to $\frac{1}{2}$ as $n \rightarrow \infty$. Similarly, the root will be a neighbor of a leaf with probability tending to $\frac{1}{4}$. And a grandparent of a leaf with probability tending to $\frac{1}{8}$, et cetera.


## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices. Now notice that the root will be a leaf with probability $\frac{2^{n-1}}{2^{n}-1}$. This tends to $\frac{1}{2}$ as $n \rightarrow \infty$. Similarly, the root will be a neighbor of a leaf with probability tending to $\frac{1}{4}$. And a grandparent of a leaf with probability tending to $\frac{1}{8}$, et cetera.
And the probability of the root being at the very top of the graph is $\frac{1}{2^{n}-1}$,


## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices. Now notice that the root will be a leaf with probability $\frac{2^{n-1}}{2^{n}-1}$. This tends to $\frac{1}{2}$ as $n \rightarrow \infty$. Similarly, the root will be a neighbor of a leaf with probability tending to $\frac{1}{4}$. And a grandparent of a leaf with probability tending to $\frac{1}{8}$, et cetera.
And the probability of the root being at the very top of the graph is $\frac{1}{2^{n}-1}$, which tends to 0 .


## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices. Now notice that the root will be a leaf with probability $\frac{2^{n-1}}{2^{n}-1}$. This tends to $\frac{1}{2}$ as $n \rightarrow \infty$. Similarly, the root will be a neighbor of a leaf with probability tending to $\frac{1}{4}$. And a grandparent of a leaf with probability tending to $\frac{1}{8}$, et cetera.
And the probability of the root being at the very top of the graph is $\frac{1}{2^{n}-1}$, which tends to 0 . Similarly, the probability of being anywhere near the top


## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices. Now notice that the root will be a leaf with probability $\frac{2^{n-1}}{2^{n}-1}$. This tends to $\frac{1}{2}$ as $n \rightarrow \infty$. Similarly, the root will be a neighbor of a leaf with probability tending to $\frac{1}{4}$. And a grandparent of a leaf with probability tending to $\frac{1}{8}$, et cetera.
And the probability of the root being at the very top of the graph is $\frac{1}{2^{n}-1}$, which tends to 0 . Similarly, the probability of being anywhere near the top tends to 0 .


## Examples of weak convergence

Let's imagine a binary tree with $n$ levels (in the picture, $n=7$ ). Turn it into a random rooted tree by choosing the root uniformly at random among the vertices. Now notice that the root will be a leaf with probability $\frac{2^{n-1}}{2^{n}-1}$. This tends to $\frac{1}{2}$ as $n \rightarrow \infty$. Similarly, the root will be a neighbor of a leaf with probability tending to $\frac{1}{4}$. And a grandparent of a leaf with probability tending to $\frac{1}{8}$, et cetera.
And the probability of the root being at the very top of the graph is $\frac{1}{2^{n}-1}$, which tends to 0 . Similarly, the probability of being anywhere near the top tends to 0 . So the limiting tree will almost never be any finite distance from the "top" (which is the degree-2 node).


## Examples of weak convergence

So the limiting random rooted graph will look like this:

## Examples of weak convergence

So the limiting random rooted graph will look like this:


## Examples of weak convergence

So the limiting random rooted graph will look like this:


This time, it is not a single fixed rooted graph almost surely!

## Examples of weak convergence

So the limiting random rooted graph will look like this:


This time, it is not a single fixed rooted graph almost surely! The underlying graph will be the Sierpiński tree almost surely,

## Examples of weak convergence

So the limiting random rooted graph will look like this:


This time, it is not a single fixed rooted graph almost surely! The underlying graph will be the Sierpiński tree almost surely, but the root will be a leaf with probability $\frac{1}{2}$,

## Examples of weak convergence

So the limiting random rooted graph will look like this:


This time, it is not a single fixed rooted graph almost surely! The underlying graph will be the Sierpiński tree almost surely, but the root will be a leaf with probability $\frac{1}{2}$, a parent of a leaf with probability $\frac{1}{4}$,

## Examples of weak convergence

So the limiting random rooted graph will look like this:


This time, it is not a single fixed rooted graph almost surely! The underlying graph will be the Sierpiński tree almost surely, but the root will be a leaf with probability $\frac{1}{2}$, a parent of a leaf with probability $\frac{1}{4}$, a grandparent of a leaf with probability $\frac{1}{8}$,

## Examples of weak convergence

So the limiting random rooted graph will look like this:


This time, it is not a single fixed rooted graph almost surely! The underlying graph will be the Sierpiński tree almost surely, but the root will be a leaf with probability $\frac{1}{2}$, a parent of a leaf with probability $\frac{1}{4}$, a grandparent of a leaf with probability $\frac{1}{8}$, and so on.

## Mass-Transport principle

That is a nice example, but it doesn't prove that the rooted infinite binary tree can't be obtained as a limit of some other sequence of finite graphs.

## Mass-Transport principle

That is a nice example, but it doesn't prove that the rooted infinite binary tree can't be obtained as a limit of some other sequence of finite graphs.

In fact, there is no such sequence of finite graphs.

## Mass-Transport principle

That is a nice example, but it doesn't prove that the rooted infinite binary tree can't be obtained as a limit of some other sequence of finite graphs.

In fact, there is no such sequence of finite graphs. To prove this, we will introduce an feature of uniformly randomly rooted finite graphs.

## Mass-Transport principle

That is a nice example, but it doesn't prove that the rooted infinite binary tree can't be obtained as a limit of some other sequence of finite graphs.

In fact, there is no such sequence of finite graphs. To prove this, we will introduce an feature of uniformly randomly rooted finite graphs.

This feature is the Mass-Transport principle

## Mass-Transport principle

That is a nice example, but it doesn't prove that the rooted infinite binary tree can't be obtained as a limit of some other sequence of finite graphs.

In fact, there is no such sequence of finite graphs. To prove this, we will introduce an feature of uniformly randomly rooted finite graphs.

This feature is the Mass-Transport principle which says that any automorphism-invariant transport scheme on the graph conserves mass.

## Mass-Transport principle

That is a nice example, but it doesn't prove that the rooted infinite binary tree can't be obtained as a limit of some other sequence of finite graphs.

In fact, there is no such sequence of finite graphs. To prove this, we will introduce an feature of uniformly randomly rooted finite graphs.

This feature is the Mass-Transport principle which says that any automorphism-invariant transport scheme on the graph conserves mass.

In symbols, this means that if a transport scheme $f: \mathcal{G} \times V(G)^{2} \rightarrow[0, \infty)$ satisfies $f(G, x, y)=f(G, \gamma x, \gamma y)$ for all $\gamma \in \operatorname{Aut}(G)$,

## Mass-Transport principle

That is a nice example, but it doesn't prove that the rooted infinite binary tree can't be obtained as a limit of some other sequence of finite graphs.

In fact, there is no such sequence of finite graphs. To prove this, we will introduce an feature of uniformly randomly rooted finite graphs.

This feature is the Mass-Transport principle which says that any automorphism-invariant transport scheme on the graph conserves mass.

In symbols, this means that if a transport scheme $f: \mathcal{G} \times V(G)^{2} \rightarrow[0, \infty)$ satisfies $f(G, x, y)=f(G, \gamma x, \gamma y)$ for all $\gamma \in \operatorname{Aut}(G)$, then we must have

## Mass-Transport principle

That is a nice example, but it doesn't prove that the rooted infinite binary tree can't be obtained as a limit of some other sequence of finite graphs.

In fact, there is no such sequence of finite graphs. To prove this, we will introduce an feature of uniformly randomly rooted finite graphs.

This feature is the Mass-Transport principle which says that any automorphism-invariant transport scheme on the graph conserves mass.

In symbols, this means that if a transport scheme $f: \mathcal{G} \times V(G)^{2} \rightarrow[0, \infty)$ satisfies $f(G, x, y)=f(G, \gamma x, \gamma y)$ for all $\gamma \in \operatorname{Aut}(G)$, then we must have

$$
\mathbb{E}\left[\sum_{v \in V(G)} f(G, \rho, v)\right]=\mathbb{E}\left[\sum_{v \in V(G)} f(G, v, \rho)\right]
$$

## Mass-Transport principle

That is a nice example, but it doesn't prove that the rooted infinite binary tree can't be obtained as a limit of some other sequence of finite graphs.

In fact, there is no such sequence of finite graphs. To prove this, we will introduce an feature of uniformly randomly rooted finite graphs.

This feature is the Mass-Transport principle which says that any automorphism-invariant transport scheme on the graph conserves mass.

In symbols, this means that if a transport scheme $f: \mathcal{G} \times V(G)^{2} \rightarrow[0, \infty)$ satisfies $f(G, x, y)=f(G, \gamma x, \gamma y)$ for all $\gamma \in \operatorname{Aut}(G)$, then we must have

$$
\mathbb{E}\left[\sum_{v \in V(G)} f(G, \rho, v)\right]=\mathbb{E}\left[\sum_{v \in V(G)} f(G, v, \rho)\right]
$$

The left-hand side is the expected amount of "mass" sent by the (random) root $\rho$. And the right-hand side is the expected amount received by $\rho$.

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs:

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs: it is just switching the order of summation of the (finite) sums.

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs: it is just switching the order of summation of the (finite) sums.

What's interesting is that the set of random rooted graphs for which the MTP holds is closed in the topology of weak convergence.

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs: it is just switching the order of summation of the (finite) sums.

What's interesting is that the set of random rooted graphs for which the MTP holds is closed in the topology of weak convergence. This means that any limit of random rooted graphs which satisfy the MTP must also satisfy the MTP.

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs: it is just switching the order of summation of the (finite) sums.

What's interesting is that the set of random rooted graphs for which the MTP holds is closed in the topology of weak convergence. This means that any limit of random rooted graphs which satisfy the MTP must also satisfy the MTP. This is a bit harder to prove

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs: it is just switching the order of summation of the (finite) sums.

What's interesting is that the set of random rooted graphs for which the MTP holds is closed in the topology of weak convergence. This means that any limit of random rooted graphs which satisfy the MTP must also satisfy the MTP. This is a bit harder to prove (but not too hard).

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs: it is just switching the order of summation of the (finite) sums.

What's interesting is that the set of random rooted graphs for which the MTP holds is closed in the topology of weak convergence. This means that any limit of random rooted graphs which satisfy the MTP must also satisfy the MTP. This is a bit harder to prove (but not too hard).

Random rooted graphs which satisfy the MTP are also called unimodular.

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs: it is just switching the order of summation of the (finite) sums.

What's interesting is that the set of random rooted graphs for which the MTP holds is closed in the topology of weak convergence. This means that any limit of random rooted graphs which satisfy the MTP must also satisfy the MTP. This is a bit harder to prove (but not too hard).

Random rooted graphs which satisfy the MTP are also called unimodular. The (compact) space of unimodular random rooted graphs is a natural place to think about limits of bounded-degree graphs.

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs: it is just switching the order of summation of the (finite) sums.

What's interesting is that the set of random rooted graphs for which the MTP holds is closed in the topology of weak convergence. This means that any limit of random rooted graphs which satisfy the MTP must also satisfy the MTP. This is a bit harder to prove (but not too hard).

Random rooted graphs which satisfy the MTP are also called unimodular. The (compact) space of unimodular random rooted graphs is a natural place to think about limits of bounded-degree graphs.

However, in contrast with the dense regime (graphings), it is still unknown whether every unimodular random rooted graph is a limit of finite graphs.

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs: it is just switching the order of summation of the (finite) sums.

What's interesting is that the set of random rooted graphs for which the MTP holds is closed in the topology of weak convergence. This means that any limit of random rooted graphs which satisfy the MTP must also satisfy the MTP. This is a bit harder to prove (but not too hard).

Random rooted graphs which satisfy the MTP are also called unimodular. The (compact) space of unimodular random rooted graphs is a natural place to think about limits of bounded-degree graphs.

However, in contrast with the dense regime (graphings), it is still unknown whether every unimodular random rooted graph is a limit of finite graphs. Some famous conjectures in group theory can be reduced to this question,

## Mass-Transport principle

The Mass-Transport principle clearly holds for all uniformly rooted finite graphs: it is just switching the order of summation of the (finite) sums.

What's interesting is that the set of random rooted graphs for which the MTP holds is closed in the topology of weak convergence. This means that any limit of random rooted graphs which satisfy the MTP must also satisfy the MTP. This is a bit harder to prove (but not too hard).

Random rooted graphs which satisfy the MTP are also called unimodular. The (compact) space of unimodular random rooted graphs is a natural place to think about limits of bounded-degree graphs.

However, in contrast with the dense regime (graphings), it is still unknown whether every unimodular random rooted graph is a limit of finite graphs. Some famous conjectures in group theory can be reduced to this question, since a positive answer would imply that every group is sofic.

## Mass-Transport principle

Anyway, let's see why the rooted infinite binary tree is not a limit of any sequence of finite graphs.

## Mass-Transport principle

Anyway, let's see why the rooted infinite binary tree is not a limit of any sequence of finite graphs. We will show that it is not unimodular.

## Mass-Transport principle

Anyway, let's see why the rooted infinite binary tree is not a limit of any sequence of finite graphs. We will show that it is not unimodular.

Let's create a transport scheme where the children of the root each send one unit of mass to the root,

## Mass-Transport principle

Anyway, let's see why the rooted infinite binary tree is not a limit of any sequence of finite graphs. We will show that it is not unimodular.

Let's create a transport scheme where the children of the root each send one unit of mass to the root, and no other mass is transported.

## Mass-Transport principle

Anyway, let's see why the rooted infinite binary tree is not a limit of any sequence of finite graphs. We will show that it is not unimodular.

Let's create a transport scheme where the children of the root each send one unit of mass to the root, and no other mass is transported.


## Mass-Transport principle

Anyway, let's see why the rooted infinite binary tree is not a limit of any sequence of finite graphs. We will show that it is not unimodular.

Let's create a transport scheme where the children of the root each send one unit of mass to the root, and no other mass is transported.


Since automorphisms of the infinite binary tree respect the distance to the root, this transport scheme is automorphism-invariant.

## Mass-Transport principle

Anyway, let's see why the rooted infinite binary tree is not a limit of any sequence of finite graphs. We will show that it is not unimodular.

Let's create a transport scheme where the children of the root each send one unit of mass to the root, and no other mass is transported.


Since automorphisms of the infinite binary tree respect the distance to the root, this transport scheme is automorphism-invariant. However, the root always receives 2 units of mass and sends none.

## Mass-Transport principle

Anyway, let's see why the rooted infinite binary tree is not a limit of any sequence of finite graphs. We will show that it is not unimodular.

Let's create a transport scheme where the children of the root each send one unit of mass to the root, and no other mass is transported.


Since automorphisms of the infinite binary tree respect the distance to the root, this transport scheme is automorphism-invariant. However, the root always receives 2 units of mass and sends none. So the MTP fails.

## Automorphisms

The binary tree had too few automorphisms,

## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

Indeed, consider the 3-regular tree.

## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

Indeed, consider the 3-regular tree. It looks like the infinite binary tree

## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

Indeed, consider the 3-regular tree. It looks like the infinite binary tree but with more automorphisms.

## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

Indeed, consider the 3-regular tree. It looks like the infinite binary tree but with more automorphisms. In fact, it is vertex-transitive.


## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

Indeed, consider the 3-regular tree. It looks like the infinite binary tree but with more automorphisms. In fact, it is vertex-transitive.


This (random) rooted tree is unimodular.

## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

Indeed, consider the 3-regular tree. It looks like the infinite binary tree but with more automorphisms. In fact, it is vertex-transitive.


> This (random) rooted tree is unimodular. In fact, it is also a limit of finite graphs.

## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

Indeed, consider the 3-regular tree. It looks like the infinite binary tree but with more automorphisms. In fact, it is vertex-transitive.


> This (random) rooted tree is unimodular. In fact, it is also a limit of finite graphs.
> Actually, all unimodular random rooted trees are limits of finite graphs

## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

Indeed, consider the 3-regular tree. It looks like the infinite binary tree but with more automorphisms. In fact, it is vertex-transitive.


> This (random) rooted tree is unimodular. In fact, it is also a limit of finite graphs.
> Actually, all unimodular random rooted trees are limits of finite graphs (this is nontrivial!).

## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

Indeed, consider the 3-regular tree. It looks like the infinite binary tree but with more automorphisms. In fact, it is vertex-transitive.


> This (random) rooted tree is unimodular. In fact, it is also a limit of finite graphs.

> Actually, all unimodular random rooted trees are limits of finite graphs (this is nontrivial!).

> By the way, there are vertextransitive graphs which are not unimodular!

## Automorphisms

The binary tree had too few automorphisms, which made it easy to find a delinquent automorphism-invariant transport scheme.

Indeed, consider the 3-regular tree. It looks like the infinite binary tree but with more automorphisms. In fact, it is vertex-transitive.


> This (random) rooted tree is unimodular. In fact, it is also a limit of finite graphs.

> Actually, all unimodular random rooted trees are limits of finite graphs (this is nontrivial!).

> By the way, there are vertextransitive graphs which are not unimodular! (to see one, look up the grandfather graph).

## Graphings

## Graphings

One way to represent a unimodular random graph is by a graphing,

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

Intuitively, this subset should represent the edge set of some graph which has vertex set $[0,1]$.

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

Intuitively, this subset should represent the edge set of some graph which has vertex set $[0,1]$. And, by picking a point $x$ in $[0,1]$ uniformly at random, you sample a rooted graph

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

Intuitively, this subset should represent the edge set of some graph which has vertex set $[0,1]$. And, by picking a point $x$ in $[0,1]$ uniformly at random, you sample a rooted graph which is the connected component of $x$,

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

Intuitively, this subset should represent the edge set of some graph which has vertex set $[0,1]$. And, by picking a point $x$ in $[0,1]$ uniformly at random, you sample a rooted graph which is the connected component of $x$, rooted at $x$.

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

Intuitively, this subset should represent the edge set of some graph which has vertex set $[0,1]$. And, by picking a point $x$ in $[0,1]$ uniformly at random, you sample a rooted graph which is the connected component of $x$, rooted at $x$. The conditions (which I didn't write) ensure that the random rooted graph you obtain from this sampling process is unimodular.

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

Intuitively, this subset should represent the edge set of some graph which has vertex set $[0,1]$. And, by picking a point $x$ in $[0,1]$ uniformly at random, you sample a rooted graph which is the connected component of $x$, rooted at $x$. The conditions (which I didn't write) ensure that the random rooted graph you obtain from this sampling process is unimodular.


Here's an example.

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

Intuitively, this subset should represent the edge set of some graph which has vertex set $[0,1]$. And, by picking a point $x$ in $[0,1]$ uniformly at random, you sample a rooted graph which is the connected component of $x$, rooted at $x$. The conditions (which I didn't write) ensure that the random rooted graph you obtain from this sampling process is unimodular.

Here's an example. Let the subset be

$$
\{(x, x+\alpha \bmod 1): x \in[0,1]\}
$$

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

Intuitively, this subset should represent the edge set of some graph which has vertex set $[0,1]$. And, by picking a point $x$ in $[0,1]$ uniformly at random, you sample a rooted graph which is the connected component of $x$, rooted at $x$. The conditions (which I didn't write) ensure that the random rooted graph you obtain from this sampling process is unimodular.

Here's an example. Let the subset be

$$
\{(x, x+\alpha \bmod 1): x \in[0,1]\}
$$

for some fixed $\alpha \in \mathbb{R}$.

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

Intuitively, this subset should represent the edge set of some graph which has vertex set $[0,1]$. And, by picking a point $x$ in $[0,1]$ uniformly at random, you sample a rooted graph which is the connected component of $x$, rooted at $x$. The conditions (which I didn't write) ensure that the random rooted graph you obtain from this sampling process is unimodular.

Here's an example. Let the subset be

$$
\{(x, x+\alpha \bmod 1): x \in[0,1]\}
$$

for some fixed $\alpha \in \mathbb{R}$. If $\alpha \in \mathbb{Q}$, then the sampled graph is a cycle almost surely.

## Graphings

One way to represent a unimodular random graph is by a graphing, which is a subset of $[0,1]^{2}$ satisfying some conditions which I won't write.

Intuitively, this subset should represent the edge set of some graph which has vertex set $[0,1]$. And, by picking a point $x$ in $[0,1]$ uniformly at random, you sample a rooted graph which is the connected component of $x$, rooted at $x$. The conditions (which I didn't write) ensure that the random rooted graph you obtain from this sampling process is unimodular.


Here's an example. Let the subset be

$$
\{(x, x+\alpha \bmod 1): x \in[0,1]\}
$$

for some fixed $\alpha \in \mathbb{R}$. If $\alpha \in \mathbb{Q}$, then the sampled graph is a cycle almost surely. If $\alpha \notin \mathbb{Q}$, then the sampled graph is the rooted bi-infinite path a.s.

## The Future

## The Future

Graphons can only represent dense graph limits, where $\mathbf{e}=\Omega\left(\mathbf{v}^{2}\right)$.

## The Future

Graphons can only represent dense graph limits, where $\mathbf{e}=\Omega\left(\mathbf{v}^{2}\right)$. Graphings only represent bounded-degree graph limits, where $\mathbf{e}=O(\mathbf{v})$.

## The Future

Graphons can only represent dense graph limits, where $\mathbf{e}=\Omega\left(\mathbf{v}^{2}\right)$. Graphings only represent bounded-degree graph limits, where $\mathbf{e}=O(\mathbf{v})$.

Both objects can be thought of as measures on $[0,1]^{2}$.

## The Future

Graphons can only represent dense graph limits, where $\mathbf{e}=\Omega\left(\mathbf{v}^{2}\right)$. Graphings only represent bounded-degree graph limits, where $\mathbf{e}=O(\mathbf{v})$.

Both objects can be thought of as measures on $[0,1]^{2}$.


Graphons are absolutely continuous.

## The Future

Graphons can only represent dense graph limits, where $\mathbf{e}=\Omega\left(\mathbf{v}^{2}\right)$. Graphings only represent bounded-degree graph limits, where $\mathbf{e}=O(\mathbf{v})$.

Both objects can be thought of as measures on $[0,1]^{2}$.


Graphons are absolutely continuous.


Graphings are highly singular.

## The Future

Graphons can only represent dense graph limits, where $\mathbf{e}=\Omega\left(\mathbf{v}^{2}\right)$. Graphings only represent bounded-degree graph limits, where $\mathbf{e}=O(\mathbf{v})$.

Both objects can be thought of as measures on $[0,1]^{2}$.


Graphons are absolutely continuous.


Graphings are highly singular.

Perhaps the ultimate graph limit space,

## The Future

Graphons can only represent dense graph limits, where $\mathbf{e}=\Omega\left(\mathbf{v}^{2}\right)$. Graphings only represent bounded-degree graph limits, where $\mathbf{e}=O(\mathbf{v})$.

Both objects can be thought of as measures on $[0,1]^{2}$.


Graphons are absolutely continuous.


Graphings are highly singular.

Perhaps the ultimate graph limit space, which can represent limits of graphs with any edge density,

## The Future

Graphons can only represent dense graph limits, where $\mathbf{e}=\Omega\left(\mathbf{v}^{2}\right)$. Graphings only represent bounded-degree graph limits, where $\mathbf{e}=O(\mathbf{v})$.

Both objects can be thought of as measures on $[0,1]^{2}$.


Graphons are absolutely continuous.


Graphings are highly singular.

Perhaps the ultimate graph limit space, which can represent limits of graphs with any edge density, will be measures on $[0,1]^{2}$ satisfying some conditions.

## The Future

Graphons can only represent dense graph limits, where $\mathbf{e}=\Omega\left(\mathbf{v}^{2}\right)$. Graphings only represent bounded-degree graph limits, where $\mathbf{e}=O(\mathbf{v})$.

Both objects can be thought of as measures on $[0,1]^{2}$.


Graphons are absolutely continuous.


Graphings are highly singular.

Perhaps the ultimate graph limit space, which can represent limits of graphs with any edge density, will be measures on $[0,1]^{2}$ satisfying some conditions. However, the more general notion of convergence here is not yet understood,

## The Future

Graphons can only represent dense graph limits, where $\mathbf{e}=\Omega\left(\mathbf{v}^{2}\right)$. Graphings only represent bounded-degree graph limits, where $\mathbf{e}=O(\mathbf{v})$.

Both objects can be thought of as measures on $[0,1]^{2}$.


Graphons are absolutely continuous.


Graphings are highly singular.

Perhaps the ultimate graph limit space, which can represent limits of graphs with any edge density, will be measures on $[0,1]^{2}$ satisfying some conditions. However, the more general notion of convergence here is not yet understood, and this is an active area of research today.

## References

[1] Aldous, David, and Russell Lyons. "Processes on unimodular random networks." Electronic Journal of Probability 12 (2007): 1454-1508.
[2] Benjamini, Itai, and Oded Schramm. "Recurrence of distributional limits of finite planar graphs." Selected Works of Oded Schramm. Springer, New York, NY, 2011. 533-545.
[3] Curien, Nicolas. Random Graphs: the Local Convergence Point of View. Lecture Notes. September 22, 2017.
[4] Lovász, László. Continuous limits of finite structures. The Abel Lectures. The Abel Prize YouTube Channel. May 26, 2021.
[5] Lovász, László. Large networks and graph limits. Vol. 60. American Mathematical Soc., 2012.

