
Pólya’s Theorem on Random Walks

Vilas Winstein

March 23, 2021
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Pólya’s Theorem

Theorem (G. Pólya, 1921)

The simple random walk on Zd is recurrent in dimensions d = 1, 2 and
transient in dimensions d ≥ 3.

“A drunk human will find their way home, but a drunk bird may get lost.”

Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 2 / 30



Pólya’s Theorem

Theorem (G. Pólya, 1921)
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George Pólya

Born in Budapest, Austria-Hungary, in 1886.

In school, he loved biology and literature,
but didn’t do so well in mathematics.

At the University of Budapest in 1905 he
began to study law but found it so boring
that he gave up after just one semester.

He ended up studying languages and became
interested in philosophy, and was advised to
take a mathematics or physics course.

He studied in Vienna and eventually came
back to Budapest where he was awarded his
doctorate in mathematics.

He spent 1912 and 1913 at Göttingen, but he was asked to leave after
punching someone on a train who happened to be a Göttingen student,
and the son of a powerful politician at the time.

Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 3 / 30



George Pólya
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Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 3 / 30



George Pólya

From 1914-1919 he worked with Hurwitz in Zürich.

During this time, Hungary was desperate for soldiers
to fight in WW1, and he was called back to serve.

He refused due to his pacifist views, and he didn’t
return to Hungary until 1967 for fear of arrest.

During WW2 he moved to the US and eventually
ended up at Stanford, where he stayed.

Pólya’s mathematical work focused on combinatorics, number theory,
probability, and numerical analysis. He also thought a lot about
mathematical pedagogy and problem-solving techniques.

Today, there are three distinct mathematical prizes named after him, as
well as buildings at the University of Idaho and at Stanford University.

Many regard Pólya as one of the most influential mathematicians of the
20th century, especially because of his work to make mathematics more
accessible. He died in Palo Alto in 1985, at 97 years old.
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From 1914-1919 he worked with Hurwitz in Zürich.
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Proof Techniques

Pólya’s original proof was published in 1921, and it was quite technical. It
was also written in German and I could not find a translation online. From
what I can tell, Pólya makes use of Fourier analysis, modular arithmetic,
and many rather complicated calculations.

Instead of Pólya’s original proof, we will be discussing a proof given by
Jonathan Novak in 2014. But this is reading classics, right??

Well, despite being published in 2014, Novak’s proof uses methods which
are arguably more classical than the methods used by Pólya. It is also
quite elegant, in my opinion.

We will see Bessel functions which were studied in the eighteenth and
nineeteenth centuries, and use an asymptotic approximation method
developed by Laplace. We will also make use of generating functions, and
an integral transform (the Borel transform).
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Instead of Pólya’s original proof, we will be discussing a proof given by
Jonathan Novak in 2014. But this is reading classics, right??

Well, despite being published in 2014, Novak’s proof uses methods which
are arguably more classical than the methods used by Pólya. It is also
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Instead of Pólya’s original proof, we will be discussing a proof given by
Jonathan Novak in 2014. But this is reading classics, right??

Well, despite being published in 2014, Novak’s proof uses methods which
are arguably more classical than the methods used by Pólya. It is also
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Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 5 / 30



Proof Techniques
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Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 5 / 30



Proof

Theorem (G. Pólya, 1921)

The simple random walk on Zd is recurrent in dimensions d = 1, 2 and
transient in dimensions d ≥ 3.

Fix d throughout the proof.

Let p be the probability that that the simple random walk on Zd returns
to the origin eventually. The random walk is recurrent if p = 1 and
transient if p < 1.

Let pn be the probability that the walk returns to the origin for the first
time on the nth step (by convention, p0 = 0).

Since the events of first returning on step n are disjoint, we have

p =
∑
n≥0

pn.
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Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 6 / 30



Proof

Theorem (G. Pólya, 1921)
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Let pn be the probability that the walk returns to the origin for the first
time on the nth step (by convention, p0 = 0).

Since the events of first returning on step n are disjoint, we have

p =
∑
n≥0

pn.
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Loop Decomposition

Let `n denote the number of loops of length n in Zd which start and end
at the origin (by convention, `0 = 1).

Let rn denote the number of “reduced” loops, i.e. the nontrivial loops that
cannot be decomposed into two smaller nontrivial loops (so r0 = 0).
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Loop Decomposition

Any nontrivial loop is the concatenation of a reduced loop and some other
loop (possibly trivial).

So, for n ≥ 1, we have

`n =
n∑

k=0

rk`n−k .

There are (2d)n paths of length n that start at the origin, all equally likely.
So, dividing the above equation by (2d)n, we get

`n
(2d)n

=
n∑

k=0

rk
(2d)k

`n−k
(2d)n−k

,

Now
`j

(2d)j
is the probability that, at the jth step, the random walk is at

the origin. Call this probability qj . And
rj

(2d)j
is the probability that the

random walk returns to the origin for the first time at step j .
rj

(2d)j
= pj .
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Generating Functions

Putting it all together, we obtain a similar identity for n ≥ 1:

qn =
n∑

k=0

pkqn−k .

Multiplying by zn and summing over n ≥ 1, we obtain

∑
n≥1

qnz
n =

∑
n≥1

(
n∑

k=0

pkqn−k

)
zn.

This is a product of power series:

∑
n≥1

(
n∑

k=0

pkqn−k

)
zn =

∑
n≥0

pnz
n

∑
n≥0

qnz
n
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Generating Functions

So the equation in the middle of the last slide turns into∑
n≥0

qnz
n

− q0 =

∑
n≥0

pnz
n

∑
n≥0

qnz
n

 .

Let’s define some power series so that we can easily refer to this equation:

Q(z) =
∑
n≥0

qnz
n, P(z) =

∑
n≥0

pnz
n.

The equation becomes

Q(z)− 1 = P(z)Q(z).
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Generating Functions

Note that the power series P(z) and Q(z) converge for |z | < 1 since their
coefficients are probabilities and so are all bounded above by 1.

Also,

P(1) =
∑
n≥0

pn1n =
∑
n≥0

pn = p.

So P(z) converges at z = 1 as well, and we can take the limit from inside:

lim
z→1−
z∈[0,1)

P(z) = P(1) = p.

Solving the equation P(z)Q(z) = Q(z)− 1 for P(z), this means that

p = lim
z→1−
z∈[0,1)

(
1− 1

Q(z)

)
= 1− 1

lim z→1−
z∈[0,1)

Q(z)
.
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Generating Functions

Remember, we are trying to find out if the random walk in Zd is recurrent
or transient.

This means we need to determine whether p = 1 or p < 1.

Now we have a formula for p from the last slide:

p = 1− 1

lim z→1−
z∈[0,1)

Q(z)
.

So we need to determine whether the limit of Q(z) in the equation is ∞
or if it is some finite number. If it is ∞, then the random walk in Zd is
recurrent. If it is finite, then the random walk is transient.
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Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 12 / 30



Generating Functions

Remember, we are trying to find out if the random walk in Zd is recurrent
or transient. This means we need to determine whether p = 1 or p < 1.

Now we have a formula for p from the last slide:

p = 1− 1

lim z→1−
z∈[0,1)

Q(z)
.

So we need to determine whether the limit of Q(z) in the equation is ∞
or if it is some finite number. If it is ∞, then the random walk in Zd is
recurrent. If it is finite, then the random walk is transient.
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Generating Functions

We want to find a nice formula for the power series Q(z).

Instead of that, let’s examine the loop generating function:

L(z) = Q(2dz) =
∑
n≥0

qn(2d)nzn =
∑
n≥0

`nz
n.

Actually, let’s look at the exponential loop generating function instead:

E (z) =
∑
n≥0

`n
n!
zn.

Why should we look at the exponential loop generating function? Because
it is easier to analyze, and we can turn it back into L(z) later using an
.
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Exponential Generating Functions

For this next section, it is helpful to make the dependence on the

dimension d explicit.

So let’s write `
(d)
n for the number of loops based at

the origin in Zd . Also, write E (d)(z) for the EGF of this sequence:

E (d)(z) =
∑
n≥0

`
(d)
n

n!
zn.

Let’s think about d = 2 for now. A loop in Z2 is composed of two loops in
Z1, one going in the vertical direction and one in the horizontal direction.
Of course, you must also choose how to compose these two loops.
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Loop Decomposition Redux
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Back to Exponential Generating Functions

So we end up with the equation

`
(2)
n =

n∑
k=0

(
n

k

)
`

(1)
k `

(1)
n−k .

Expanding the binomial coefficient, and then dividing, this becomes

`
(2)
n

n!
=

n∑
k=0

`
(1)
k

k!

`
(1)
n−k

(n − k)!
.

This is why we switched to exponential generating functions. This becomes

E (2)(z) = E (1)(z)E (1)(z) =
(
E (1)(z)

)2
.
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Exponential Generating Functions

More generally, by the same reasoning (or by induction), we have

E (d)(z) =
(
E (1)(z)

)d
.

Counting loops in one dimension is easy. Each loop must take k steps to
the left and k steps to the right (for some k). The left-steps can be taken
anywhere in the sequence of 2k steps, so we have

`
(1)
n =

{(2k
k

)
if n = 2k is even,

0 if n is odd.

So we have the following expression for E (1)(z):

E (1)(z) =
∞∑
k=0

(
2k

k

)
z2k

(2k)!
=
∞∑
k=0

z2k

k!k!
.
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Uh Oh

Now it is time to invoke a huge black box.

The function E (1)(z) is
(almost) a modified Bessel function of the first kind. Such a function is
one of the two linearly independent solutions to the following second-order
differential equation (with parameter α ∈ C):(

z2 d2

dz2
+ z

d

dz
− (z2 + α2)

)
F (z) = 0

This is called the modified Bessel equation. It was studied extensively by
nineteenth-century mathematicians, since it comes up in a lot of physics
problems. The solution (of the first kind) is usually denoted Iα(z).
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Modified Bessel Equation

Since it has been so heavily studied, we have a series representation:

Iα(z) =
∞∑
k=0

(
z
2

)2k+α

k!Γ(k + α + 1)
.

We also have an integral representation:

Iα(z) =

(
z
2

)α
√
πΓ
(
α + 1

2

) ∫ π

0
ez cos θ(sin θ)2α dθ.

Don’t worry! The formulas that we will be using are a special case of
these, and are a bit simpler.
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will use later:

I0(z) =
1

π

∫ π

0
ez cos θ dθ.
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Borel Transform

The following integral transform is how we will convert our exponential
generating function into a regular generating function:

(Bf )(z) =

∫ ∞
0

f (tz)e−t dt

Suppose we have any sequence (an), and turn it into an EGF

A(z) =
∑
n≥0

an
n!

zn.

Then, applying the Borel transform yields

(BA)(z) =
∑
n≥0

an
n!

zn
∫ ∞

0
tne−t dt.

That integral is the definition of Γ(n + 1), which equals n!. Thus (BA)(z)
is the standard generating function for the sequence (an).

Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 21 / 30



Borel Transform

The following integral transform is how we will convert our exponential
generating function into a regular generating function:

(Bf )(z) =

∫ ∞
0

f (tz)e−t dt

Suppose we have any sequence (an), and turn it into an EGF

A(z) =
∑
n≥0

an
n!

zn.

Then, applying the Borel transform yields

(BA)(z) =
∑
n≥0

an
n!

zn
∫ ∞

0
tne−t dt.

That integral is the definition of Γ(n + 1), which equals n!. Thus (BA)(z)
is the standard generating function for the sequence (an).
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Borel Transform

Let’s apply it to our exponential generating function.

L(z) = BE (z) = BI0(2z)d =

∫ ∞
0

I0(2tz)de−t dt.

Thus we get a representation for our probability generating function

Q(z) = L
( z

2d

)
=

∫ ∞
0

I0
( tz
d

)d
e−t dt.

Remember, we are trying to determine limz→1− Q(z). If this limit is ∞,
then the random walk in Zd is recurrent. If this limit is finite, then the
random walk is transient.
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Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 22 / 30



Borel Transform

Let’s apply it to our exponential generating function.

L(z) = BE (z) = BI0(2z)d =

∫ ∞
0

I0(2tz)de−t dt.

Thus we get a representation for our probability generating function

Q(z) = L
( z

2d

)

=

∫ ∞
0

I0
( tz
d

)d
e−t dt.

Remember, we are trying to determine limz→1− Q(z). If this limit is ∞,
then the random walk in Zd is recurrent. If this limit is finite, then the
random walk is transient.
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Approximation Time

Since we don’t really care about the value of the limit (we just care about
whether it is finite or not), it suffices to consider the tail integral∫ ∞

N
I0
( tz
d

)d
e−t dt

for large N. This is because the integrand doesn’t blow up at any finite
values. So the integral from 0 to N is always finite, regardless of z .

Here’s that integral formula for the Bessel function again:

I0
( tz
d

)
=

1

π

∫ π

0
et

z
d

cos θ dθ.

We will estimate this, as t →∞, using an asymptotic analysis method
which is called Laplace’s method (and which uses Laplace’s principle).
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Laplace’s Method

Let f (θ) = z
d cos θ be the function in the exponential in the integrand of

the last integral.

This function is strictly maximized over the interval [0, π]
at θ = 0.

So the integrand etf (θ) is “exponentially larger” at the left endpoint than
anywhere else in the interval, and this effect increases as t →∞. We
would expect, then, to be able to approximate the integral using data
about f (θ) at θ = 0 (when t is large).

To quantify this, let’s expand f (θ) using it’s second Taylor polynomial
approximation:

f (θ) ≈ f (0)− |f ′′(0)|θ
2

2
.

Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 24 / 30



Laplace’s Method

Let f (θ) = z
d cos θ be the function in the exponential in the integrand of

the last integral. This function is strictly maximized over the interval [0, π]
at θ = 0.

So the integrand etf (θ) is “exponentially larger” at the left endpoint than
anywhere else in the interval, and this effect increases as t →∞. We
would expect, then, to be able to approximate the integral using data
about f (θ) at θ = 0 (when t is large).

To quantify this, let’s expand f (θ) using it’s second Taylor polynomial
approximation:

f (θ) ≈ f (0)− |f ′′(0)|θ
2

2
.
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Laplace’s Method

Now we can use that approximation to approximate the integral:∫ π

0
etf (θ) dθ ≈ etf (0)

∫ π

0
e−t|f

′′(0)| θ
2

2 dθ.

Since the integrand on the right decays rapidly, we can approximate the
integral by extending the upper bound to ∞. That gives us half of a
Gaussian integral, and there is a formula for those:∫ ∞

0
e−t|f

′′(0)| θ
2

2 dθ =

√
π

2t|f ′′(0)|
.

So, hopefully, we have the following good approximation:∫ π

0
etf (θ) dθ ≈ etf (0)

√
π

2t|f ′′(0)|
.
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Laplace’s Method

Luckily, Laplace’s principle (another black box for us) says that the
approximation we were hoping for actually does work!

Specifically, we have∫ π

0
etf (θ) dθ ∼ etf (0)

√
π

2t|f ′′(0)|
as t →∞.

In our case, with f (θ) = z
d cos θ, we have f (0) = |f ′′(0)| = z

d and so

I0
( tz
d

)d
=

(
1

π

∫ π

0
etf (θ) dθ

)d

∼
(

1

π
et

z
d

√
π

2t zd

)d

= Cetz(tz)−d/2,

as t →∞, where C = dd/2

2d/2πd−d/2 is a constant. Of course, C depends on
d , but that doesn’t matter to us at this point, since we are considering the
convergence of an integral in t and a limit in z .
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Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 26 / 30



Laplace’s Method

Luckily, Laplace’s principle (another black box for us) says that the
approximation we were hoping for actually does work! Specifically, we have∫ π

0
etf (θ) dθ ∼ etf (0)

√
π

2t|f ′′(0)|
as t →∞.

In our case, with f (θ) = z
d cos θ, we have f (0) = |f ′′(0)| = z

d and so

I0
( tz
d

)d
=

(
1

π

∫ π

0
etf (θ) dθ

)d

∼
(

1

π
et

z
d

√
π

2t zd

)d

= Cetz(tz)−d/2,

as t →∞, where C = dd/2

2d/2πd−d/2 is a constant. Of course, C depends on
d , but that doesn’t matter to us at this point, since we are considering the
convergence of an integral in t and a limit in z .
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Finishing Touches

Remember, we were trying to determine whether the integral limit

lim
z→1−
z∈[0,1)

∫ ∞
N

I0
( tz
d

)d
e−t dt

converges or not (where N is any large number). If N is large enough,
then the approximation we have works well enough to determine the
convergence or divergence of the integral. So we will consider

lim
z→1−
z∈[0,1)

∫ ∞
N

etz(tz)−d/2e−t dt.
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Finishing Touches

If t is large enough, then as z increases to 1 from below, the integrand
etz(tz)−d/2e−t increases as well.

(You can check this by taking a
derivative with respect to z). So, when N is large enough, we can apply
the monotone convergence theorem:

lim
z→1−
z∈[0,1)

∫ ∞
N

etz(tz)−d/2e−t dt =

∫ ∞
N

lim
z→1−
z∈[0,1)

etz(tz)−d/2e−t dt.

And the limit on the inside is easy to evaluate:

lim
z→1

etz(tz)−d/2e−t = ett−d/2e−t = t−d/2.

Vilas Winstein Pólya’s Theorem on Random Walks March 23, 2021 28 / 30



Finishing Touches

If t is large enough, then as z increases to 1 from below, the integrand
etz(tz)−d/2e−t increases as well. (You can check this by taking a
derivative with respect to z).

So, when N is large enough, we can apply
the monotone convergence theorem:

lim
z→1−
z∈[0,1)

∫ ∞
N

etz(tz)−d/2e−t dt =

∫ ∞
N

lim
z→1−
z∈[0,1)

etz(tz)−d/2e−t dt.

And the limit on the inside is easy to evaluate:

lim
z→1

etz(tz)−d/2e−t = ett−d/2e−t = t−d/2.
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Finishing Touches

So, all together, we have found that the simple random walk in Zd is
recurrent if and only if the integral∫ ∞

N
t−d/2 dt

diverges (for some large N).

This is an easy calculus problem, and the
integral diverges exactly when d = 1 or 2.

So we have proved Pólya’s theorem!
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