Alexander Modules $K \quad \text{knut}$ $\Pi_{K} \triangleright \Pi_{K}^{(1)} \triangleright \Pi_{k}^{(2)} \triangleright \cdots$ $\Pi_{K}^{(i+1)} = [\Pi_{K}^{(i)}, \Pi_{k}^{(i)}]$ $\Pi_{K}^{(i)} \subset \Pi_{K}^{(0)} / \Pi_{k}^{(0)}$

-

Page 1

$$g: \mathcal{F} = p'(p)$$
for $X = S_k = S^3 - K$,
 \tilde{X} is the ∞ -cyclic cover
that is $\mathcal{D} = \mathbb{Z} \cong H_1(S_k) = \frac{\pi_k}{\pi_k}$
 $\pi_1(\tilde{X}, \tilde{p}) = \pi_1(\tilde{S}_k) = [\pi_k, \pi_k] = \pi_k^{(1)}$
 $\frac{\pi_k}{\pi_k} = H_1(\tilde{X})$
 \mathcal{D} acts on \tilde{X} with \mathcal{D} generated by
 $\tau: \tilde{X} \longrightarrow \tilde{X}$
 $t = \tau_k: H_1(\tilde{X}) \longrightarrow H_1(\tilde{X})$
 $\frac{3t^2 + 7t^2 - 4t^{-2}: H_1(\tilde{X}) \longrightarrow H_1(\tilde{X})}{\mathcal{C}(t, t^{-1})}$ (averated polynomials

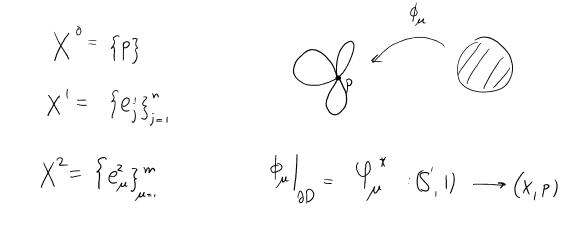
Let the Alexander module for a knot K is

$$H(\tilde{s}_{k})$$
 where \tilde{s}_{k} is ∞ -cyclic cover of s_{k} .
as a $\mathbb{Z}(t,t')$ module as action of t given by Decktrausf.

$$\mathsf{X}$$
 for links: $\mathsf{H}_1(\tilde{\mathsf{S}}_2)$ as $\mathbb{Z}[\mathsf{t}_1,\mathsf{t}_1],\ldots,\mathsf{t}_k,\mathsf{t}_k]$

Describe
$$H_1(\tilde{X})$$
 as $\mathbb{Z}[D]$ -module.
Given $\Pi_1(X, p) = \langle S_1, ..., S_n | r_1, ..., r_m \rangle$

* consider X as CW-complex



(ell structure
$$\tilde{X}$$
 given by lifting cells in X.
 $\tilde{X}^{\circ} = F = p^{-1}(p)$

Page 3

~

Denote lift of
$$\mathcal{S}_{j}$$
 based at \tilde{p} by $\tilde{\mathcal{S}}_{j}$

$$\begin{bmatrix} \Delta_{j} \\ = S_{j} \\ \lambda(S_{j})(\tilde{p}) \\ \tilde{\mathcal{S}}_{j} \\ \tilde{p} \\ \vdots \\ \tilde{p} \\ \end{bmatrix}$$

$$\begin{bmatrix} \Delta_{j} \\ = S_{j} \\ \lambda(S_{j}) \in D \\ \tilde{p} \\ \tilde{p} \\ \tilde{p} \\ \tilde{p} \\ 1 \text{ if } + \text{ of } \mathcal{S}_{j} \text{ at } g(\tilde{p}) \text{ jing by } g \cdot \tilde{\mathcal{S}}_{j} \\ (g \in D) \\ parameteeize M \\ 1-call \\ C_{jj} \\ = S e_{j}^{2} \\ . \\ 2-cells \\ e_{i,m}^{2} \\ \end{bmatrix}$$