Braided Tensor Categories

are quesi-triangular floof algebras:

$$(A, \Delta, \varepsilon, R)$$
 - q-t bialg.

- · A: unital assoc aly /c
- $\triangle : A \longrightarrow A \otimes A$ alg hom. sit. $(\triangle \otimes id) (\triangle (x)) = (id \otimes \triangle) (\triangle (x)) \qquad \forall x \in A.$

°
$$\varepsilon: A \longrightarrow \mathbb{C}$$
 aly how.

$$(\varepsilon \otimes id)(\Delta(x)) = x = (id \otimes \varepsilon)(\Delta(x))$$

· REASA invertible sit.

(intertuning eqn)
$$\Delta^{\circ p}(x) = R \cdot \Delta(x) \cdot R^{-1}$$

(cabling identities)
$$(\Delta \otimes id)(R) = R_{13} \cdot R_{23}$$

 $(id \otimes \Delta)(R) = R_{13} \cdot R_{12}$

Bialgebra Mb Hopf algebra

$$\mathsf{mull} \; \left(\left(\mathsf{S} \otimes \mathsf{id} \right) \left(\Delta(\mathsf{x}) \right) \right) = \; \mathsf{E}(\mathsf{x}) = \; \mathsf{mull} \; \left(\left(\mathsf{id} \otimes \mathsf{S} \right) \left(\Delta(\mathsf{x}) \right) \right) \qquad \forall \; \; \mathsf{x} \in \mathsf{A} \; .$$

eg
$$W(or)$$
 (or lie alg/c)

Penveloping alg of or

$$\triangle(x) = x \otimes 1 + 1 \otimes x$$

$$\varepsilon(x) = 0$$

$$S(x) = -x$$

$$\left[\begin{array}{ccc}
OT \left(\bigvee \sim P & OT \left(\bigvee ^{*} & P & P \\
(X \cdot \xi)(V) = -\xi(X \cdot V)
\end{array} \right) \right]$$

Remark: Antipode S allows us to define duals

$$ACV \sim ACV^* \quad (\alpha \cdot \xi)(v) = \xi(S(\alpha) \cdot \nu)$$

A C
$$^{*}V$$
 (a.f)(v) = $\int (s^{-1}(a) \cdot v)$ with Right June

Lemma:
$$\varepsilon \otimes id(R) = 1$$

 $S \otimes id(R) = R^{-1}$

If
$$\Delta \otimes | (R) = R_{13} \cdot R_{23}$$
 $\frac{\otimes \otimes id \otimes id}{\text{multiply}}$ $(\epsilon \otimes id)(R) = (s \otimes id)(R) \cdot R$. \Box
 $R = (\epsilon \otimes id)(R) \cdot R$
 $\Rightarrow (\epsilon \otimes id)(R) = I$.

Prop R satisfies the following (in A
$$\otimes$$
 A \otimes A)
$$R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12}$$
(Yang-Baxter egn)

$$R_{12} R_{13} R_{23}$$

$$R_{12} (\Delta \otimes id)(R)$$

$$(\Delta^{\circ P} \otimes id)(R) \cdot R_{12} = R_{23} R_{13} R_{23}$$

If ACV and
$$n \in \mathbb{Z}_{>2}$$
 than

 $B_n \longrightarrow GL(V^{\otimes n})$
 $T_i \longmapsto (i \ i + i) R_{i,i+1}$

is a gp hom.

Definition
$$U_{t}$$
 (sl₂) quantum Sl_2 .

Generators H , E , F .

Which is $t_{-adically}$ complete Relations $[H,E] = 2E$

$$[H,F] = -2F$$

$$[E,F] = \frac{e^{\frac{t}{2}H} - e^{-\frac{t}{2}H}}{e^{\frac{t}{2}} - e^{-\frac{t}{2}}} = H + O(t_1^2)$$

$$q = e^{\frac{t}{2}}, \quad K = e^{\frac{t}{2}H} \longrightarrow [E,F] = \frac{K-K'}{2}$$

Coproduct
$$\Delta: \mathcal{U}_{h}(sl_{2}) \longrightarrow \mathcal{U}_{h}(sl_{2})^{\otimes 2}$$

$$\Delta(H) = H \otimes | + | \otimes H$$

$$\Delta(E) = E \otimes | + K \otimes E$$

$$\Delta(F) = F \otimes K^{-1} + | \otimes F$$

Thus A extends to a alg how.

Counit:
$$\varepsilon(H) = \varepsilon(E) = \varepsilon(F) = 0$$

Centipode:
$$S(H) = -H$$

 $S(E) = -K^{-1}E$
 $S(F) = -FK$
 $S(F) = -FK$

Need R ∈ U, (sl2) satisfying intertwining ey" & cubbing id.

Thun $(\mathcal{U}_{h}(sl_{2}), \Delta, \varepsilon, R; S) = 7-\Delta-Hopf alg$