Real Analysis 6211 Autumn 2019 Homework problem list

Problem 1. Two metrics p1, p2 on X are called equivalent if there is a C > 0 such that

Cilp1<x7y) Sp?(xay) §Cﬂl(xay) vayeX-

Show that equivalent metrics induce the same topology on X. That is, show that U C X is open
with respect to p; if and only if U is open with respect to ps.

Problem 2 (Sarason). Let (X, p) be a metric space.

(1) Let v : [0,00) — [0, 00) be a continuous non-decreasing function satisfying
e a(s) =0 if and only if s = 0, and
o a(s+1t) <a(s)+ aft) for all s,t > 0.
Define o(z,y) := a(p(x,y)). Show that o is a metric, and ¢ induces the same topology on
X as p.
(2) Define p1,p2 : X x X — [0,00) by

pr(w,y) == {/’(W) if p(z,y) <1

1 otherwise.
p(z,y)
p2(2,y) = .
1+ p(z,y)
Use part (1) to show that p; and p2 are metrics on X which induce the same topology on

X as p.

Problem 3. A collection of subsets of (F;);er of X has the finite intersection property if for any
finite J C I, we have (), ; Fj # (). Prove that for a metric (or topological) space, the following are
equivalent.

jeJ

(1) Every open cover of X has a finite subcover.
(2) For every collection of closed subsets (Fj;);c; with the finite intersection property, (;c; F; #

Problem 4. Let X be a set. A m-system on X is a collection of subsets II C P(X) which is closed
under finite intersections. A A-system on X is a collection of subsets A C P(X) such that

e X eA
e A is closed under taking complements, and
e for every sequence of disjoint subsets (E;) in A, |J E; € A.

(1) Show that M is a o-algebra if and only if M is both a 7-system and a A-system.
(2) Suppose A is a A-system. Show that for every E € A, the set

AE):={F C X|[FNE €A}
is also a A-system.

Problem 5 (7 — A Theorem). Let IT be a m-system, let A be the smallest A-system containing II,
and let M be the smallest o-algebra containing II.

(1) Show that A C M.
(2) Show that for every E € II, Il C A(E) where A(E) was defined in Problem [4] above. Deduce
that A C A(F) for every E € II.
(3) Show that IT C A(F) for every F' € A. Deduce that A C A(F) for every F € A.
(4) Deduce that A is a o-algebra, and thus M = A.
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Problem 6. Let II be a m-system, and let M be the smallest o-algebra containing II. Suppose
u, v are two measures on M whose restrictions to Il agree.

(1) Suppose that u, v are finite and u(X) = v(X). Show p = v.
Hint: Consider A .= {E € M|v(E) = u(E)}.

(2) Suppose that X = [[;Z, X; with (X;) C ITand u(X;) = v(X;) < oo for all j € N. (Observe
that x4 and v are o-finite.) Show pu = v.

Problem 7 (Folland §1.3, #14 and #15). Given a measure p on (X, M), define v on M by
V(E) :=sup{u(F)|F C E and u(F) < oo} .

(1) Show that v is a semifinite measure. We call it the semifinite part of p.

(2) Suppose E € M with v(E) = co. Show that for any n > 0, there is an F' C E such that
n < v(F) < .
This is exactly Folland §1.3, #1/ applied to v.

(3) Show that if u is semifinite, then u = v.

(4) Show there is a measure p on M (which is generally not unique) which assumes only the
values 0 and oo such that p =v + p.

Problem 8 (Adapted from Folland §1.4, #18 and #22). Suppose A is an algebra on X, and let
M Dbe the o-algebra generated by A. Let pg be a o-finite premeasure on A, p* the induced outer
measure, and M* the og-algebra of p*-measurable sets. Show that the following are equivalent.

(1) Ee M*

(2) E = F\ N where F € M and p*(N) = 0.

(3) E=FUN where F'€ M and p*(N) = 0.

Deduce that if u is a o-finite measure on M, then p*|y+ on M* is the completion of p on M.

Problem 9 (Folland §1.4, #20). Let p* be an outer measure on P(X), M* the o-algebra of
p*-measurable sets, and p := p*|a+. Let uT be the outer measure on P(X) induced by the
(pre)measure p on the (o-)algebra M*.

(1) Show that p*(E) < ut(F) for all E C X with equality if and only if there is an F' € M*
with E C F and p*(E) = p*(F).

(2) Show that if u* was induced from a premeasure po on an algebra A, then p* = pt.

(3) Construct an outer measure p* on the two point set X = {0,1} such that p* # p*.

Problem 10 (Sarason). Suppose pg is a finite premeasure on the algebra A C P(X), and let
w* : P(X) — [0,00] be the outer measure induced by . Prove that the following are equivalent
for £ C X.

(1) E € M*, the p*-measurable sets.
(2) p*(E) + p*(X\ E) = p(X).
Hint: Use Problem[8.

Problem 11.

(1) Show that every open subset of R is a countable union of open intervals where both endpoints
are rational.
(2) Suppose U C R is open and suppose ((aj,b;))jes is a collection of open intervals which
cover U:
U C U (aj, bj).
jeJ
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Show there is a countable sub-cover, i.e., show that there is a countable subset I C J such

that
U C U(ai, bz)
el
(3) Suppose ((aj,bj])jes is a collection of half-open intervals which cover (0, 1]:
(0, 1) < (J(ay,b;].
jed

Show there is a countable sub-cover, i.e., show that there is a countable subset I C J such
that
(0,1] < (J(as, bi].

Problem 12. Define the h-intervals
H:={0}U{(—a,b]|-00c <a<b<oo}U{(a,0)a €R}.

Let A be the collection of finite disjoint unions of elements of H. Show directly from the definitions
that A is an algebra. Deduce that the o-algebra M(A) generated by A is equal to the Borel
o-algebra Bg.

Problem 13. Assume the notation of Problem[I2] Suppose F' : R — R is non-decreasing and right
continuous, and extend F' to a function [—o0, 00] — [—00, 00] still denoted F' by

F(—o00):= lim F(a) and F(o0) := blggo F(b).

a—r—00
Define pig : H — [0 oo] by

* po(0) =
o 1o((a, ]) F(b) — F(a) for all —oo < a < b < o0, and
e 1p((a,00)) := F(o0) — F(a) for all a € R.

Suppose (a,00) =[] i1 Hj where (H;) C H is a sequence of disjoint h-intervals. Show that

= ZMO(H
j=1

Problem 14. Let F' : R — R be increasing and right continuous, and let pur be the associated
Lebesgue-Stieltjes Borel measure on Bg. For a € R, define

F(b=) := i F(b).

Prove that:
(1) pr({a}) = F(a) F(a ),
(3) ur([a,b]) = F(b) F(a ) and

(4) pr((a,b)) = F(b—) — F(a).

Problem 15. Let (X, p) be a metric (or simply a topological) space. A subset S C X is called
nowhere dense if S does not contain any open set in X. A subset T' C X is called meager if it is a
countable union of nowhere dense sets.

Construct a meager subset of R whose complement is Lebesgue null.

Problem 16 (Steinhaus Theorem, Folland §1.5, #30 and 31). Suppose E € £ and A(F) > 0.

(1) Show that for any 0 < « < 1, there is an open interval I C R such that A(ENT) > a\(]).
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(2) Apply (1) with a = 3/4 to show that the set
E—-FE={x—y|z,y € E}
contains the interval (=\(I)/2,A(1)/2).
Problem 17. Let Bg be the Borel g-algebra of R. Suppose p is a translation invariant measure

on Br such that p((0,1]) = 1. Prove that u = A|g,, the restriction of Lebesgue measure on £ to
Br.

Problem 18 (Sarason). Suppose E € L is Lebesgue null, and ¢ : R — R is a C! function
(continuous with continuous derivative). Prove that ¢(FE) is also Lebesgue null.

Problem 19. Find an uncountable subset of R with Hausdorfl dimension zero.

Problem 20. Suppose (X, M) is a measurable space and (Y,7), (Z,6) are topological spaces,
i:Y — Z is a continuous injection which maps open sets to open sets, and f : X — Y. Show that
f is M — B, measurable if and only if i o f is M — By measurable.

Deduce that if f : (X, M) — R only takes values in R, then f is M — Bz measurable if and only
if f is M — Bgr measurable.

Problem 21. Prove the following assertions.
(1) Suppose f: X — Y is a function. Define ? : P(Y) — P(X) by ?(T) ={z e X|f(z) e T}.
Then 7‘" preserves unions, intersections, and complements.
(2) Suppoie f: X — Y is a function. Define ? : P(X) = P(Y) by ?(S) = {f(s)|s € S}.

Then f preserves unions, but not intersections nor complements.

(3) Given f : X — Y and a topology 6 on Y, f = {f )‘U S 0} is a topology on X.
Moreover it is the weakest topology on X such that f is continuous.

(4) Given f: X — Y and a topology 7 on X, f = {U C Y’f ) € 7'} is a topology on
Y. Moreover it is the strongest topology on } Y such that f is contlnuous.

(5) Given f: X — Y and a o-algebra N on Y, f ={/ )‘FE/\/'} is a o-algebra on X.
Moreover it is the weakest o-algebra on X such that f is measurable.

(6) Given f: X — Y and a o-algebra M on X, f {F - Y}f ) € M} is a g-algebra
on Y. Moreover it is the strongest o-algebra on Y such that f is measurable.

(7) The Borel o-algebra on R is generated by the open rays (a, oc] for a € R.

(8) If £ C P(R) generates the Borel o-algebra on R, then & U {{oco}} generates the Borel
o-algebra on R.

Problem 22. Let (X, M) be a measurable space.
(1) Prove that the Borel o-algebra B¢ on C is generated by the ‘open rectangles’

{z € Cla < Re(z) < band c <Im(z) <d}.

(2) Prove directly from the definitions that f : X — C is M — B¢ measurable if and only if
Re(f) and Im(f) are measurable.

(3) Prove that the M — B¢ measurable functions form a C-vector space.

(4) Show that if f : X — C is M — B¢ measurable, then |f| : X — [0, 00) is M — Bg measurable.

(5) Show that if (f,) is a sequence of M — B¢ measurable functions X — C and f,, — f
pointwise, then f is M — B¢ measurable.

Problem 23. Let (X, M, i) be the completion of the measure space (X, M, ).
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(1) Show that if f is M-measurable and g = f a.e., then g is M-measurable.
Optional: Does this hold with M replaced by M?

(2) Show that if f is M-measurable, there exists an M-measurable ¢ such that f = g a.e.
Hint: First do the case f is R-valued.

(3) Show that if (f,,) is a sequence of M-measurable functions and f,, — f a.e., then f is
M-measurable.

Optional: Does this hold with M replaced by M?

(4) Show that if (f,) is a sequence of M-measurable functions and f,, — f a.e., then f is
M-measurable. Deduce that there is an M-measurable function g such that f = g a.e., so
fn— g ae.

For all parts, consider the cases of R, R, and C-valued functions.

Problem 24. Let (X, M, 1) be a measure space.
(1) Show that a simple function ¢ = »,_; cxx g, where ¢ > 0 for all k = 1,...,n is integrable
if and only if pu(Ey) < oo forall k =1,...,n.
(2) Show that if a simple function ¥ = » )_, cxxE, is integrable with pu(Ej;) < oo for all
k=1,...,n,then [¢=37_ cppu(Ey).

In both parts of the question, we do not assume that v is written in its standard form.

Problem 25. Suppose f : (X, M,u) — [0,00] is M-measurable and {f > 0} is o-finite. Show
that there exists a sequence of nonnegative simple functions (¢,,) such that

Y /f,

e 1, is integrable for every n € N.
Optional: In what sense can you say ¥, ' f uniformly?

Problem 26. Assume Fatou’s Lemma and prove the Monotone Convergence Theorem from it.

Problem 27. Let (X, M, 1) be a measure space.
(1) Suppose f € LT and [ f < co. Prove that {f = oo} is g-null and {f > 0} is o-finite.
(2) Suppose f € L*(u,C). Prove that {f # 0} is o-finite.

Problem 28. Suppose (X, M, 1) is a measure space and f € L'(u, C). Prove that for every & > 0,
there exists a > 0 such that for every £ € M with u(E) <4, [ |f| <e.

Problem 29. Let (X, M, u) be a measure space.
(1) Prove that || - ||1 : £1(u,C) — [0,00) given by || f|l1 :== [ |f| is a norm. That is, prove the
following axioms hold:
o (definite) ||f|l1 = 0 if and only if f = 0.
e (homogeneous) |[A- fll1 = |A| - ||f|lx for all A € C.
o (subadditive) || f + gllx < [fllx + llgll-
(2) Suppose (V.|| - ||) is a C-vector space with a norm (you may assume V = L£!(x,C) and
Il -] = |- |l1 if you wish). Prove that p(z,y) := ||z — y|| defines a metric on V.
(3) Prove that the metric p; on £! induced by || - ||; is complete. That is, prove every Cauchy
sequence converges in L.

Problem 30. Suppose (X, M, p1) is a measure space, and let (X, M, 1) be its completion. Find a
canonical C-vector space isomorphism L!(u, C) = £ (1, C) which preserves || - ||1.

Problem 31. Let u be a Lebesgue-Stieltjes Borel measure on R. Show that C.(R), the continuous
functions of compact support ({f # 0} compact) is dense in £!(y,R). Does the same hold for R
and C-valued functions?

Hint: You could proceed in this way:



(1) Reduce to the case f € L'NLT.

(2) Reduce to the case f € L' N SFT.

(3) Reduce to the case f = xg with E € Br and pu(E) < co.

(4) Reduce to the case f = xy with U C R open and u(U) < oo.
(5) Reduce to the case f = X(ab) With a <b in R.

Problem 32 (Lusin’s Theorem). Suppose f : [a,b] — C is Lebesgue measurable and & > 0. There
is a compact set E C [a, b] such that A(E€) < ¢ and f|g is continuous.

Problem 33. Suppose f € £1([0,1], ) is an integrable non-negative function.

(1) Show that for every n € N, ¥/f € £1([0,1], \).
(2) Show that ({/f) converges in £! and compute its limit.

Hint for both parts: Consider {f > 1} and {f < 1} separately.

Problem 34. Suppose (X, M, u) is a measure space and f,, — f in measure and g, — g in measure
(these functions are assumed to be measurable). Show that

(1) |fn] = |f| in measure.
(2) fn+9gn — [+ g in measure.
(3) fngn — fg if u(X) < oo, but not necessarily if u(X) = oc.
Hint: First show fn,g — fg in measure. To do so, one could follow the following steps.
(a) Show that for g : X — C with u(X) < oo, u({|g| > n}) = 0 as n — co.
(b) Show that for any € > 0, by step (a), X = E'Il E€ where |g|g| < M and p(E€) < e/2.
(¢) For § >0 and carefully chosen M >0 and E,

{fng — fal > 0} = ({fng — fgl > 0} N E)IL({|fag — fgl > 6} N E°)
C {|fn_f| > ]\64} U E“.

Problem 35 (Folland §2.4, #33 and 34). Suppose (X, M, p) is a measure space and f, — f in
measure (these functions are assumed to be measurable).

(1) Show that if f, > 0 everywhere, then [ f <liminf [ f,.
(2) Suppose |fn| < g € L. Prove that [ f =lim [ f, and f,, — f in £L.

Problem 36. For the following statement, either provide a proof or a counterexample. Let X,Y
be topological spaces with Borel o-algebras Bx, By respectively and regular Borel measures p, v.
Then the product measure p X v is also regular.

Optional: If you find a counterexample, can you find a weak modification under which it is true?

Problem 37. Suppose f : R? — R is such that each z-section f, is Borel measurable and fY is
continuous. Show f is Borel measurable.

Problem 38. Suppose (X, M) and (Y, N') are measurable spaces and (E,,) C M x N. Prove the
following assertions about z-sections.

(1) (UEn), = U(En)e-

(2) (NEn), = N(En)e-

(3) (Em\ En)g; = (Em)z \ (En)a-

(4) XE,(T,9) = X(E,),(y) forall z € X and y € Y.

Problem 39 (Counterexamples: Folland §2.5, #46 and #48).
(1) Let X =Y =[0,1], M =N = Bjg,1; 1+ = A Lebesgue measure, and v counting measure.

Let A = {(z,z)|z € [0,1]} be the diagonal. Prove that [ [ xadpdv, [ [ xadvdu, and

J xa d(p x v) are all unequal.
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(2) Let X =Y =N, M =N = P(N), and 1 = v counting measure. Define
1 ifm=n
f(m,n):=4¢—-1 ifm=n+1
0 else.

Prove that [ |f|d(u X v) = o0, and [ [ fdudv and [ [ fdvdp both exist and are unequal.

Problem 40. Show that the conclusions of the Fubini and Tonelli Theorems hold when (X, M, 1)
is an arbitrary measure space (not necessarily o-finite) and Y is a countable set, N'= P(Y), and
v is counting measure.

Problem 41. Suppose f,g € L1(R, \).
(1) Show that y — f(z — y)g(y) is measurable for all 2 € R and in L}(R, ) for a.e. z € R.
(2) Define the convolution of f and g by

(f * 9)(x /fx—

Show that f* g € L(R,\).
(3) Show that £!(R,\) is a commutative C-algebra under -, +, *
(4) Show that [, |f*g| < [o |f] Jalgl i-e., || - |1 is submultiplicative.

Problem 42. Suppose f € L(A\"). Prove that for all T € M,(R), foT € £L'(\") and
/ F(Tz) dN"(z) = | det(T / F@)d (@

Problem 43 (Sarason). For f € £1(\"), let M be the Hardy-Littlewood maximal function

(Mﬂ()—mm{ /Lﬂw"Qea>}

where C(x) is the set of all cubes of finite length which contain x. Define
o
f(x) = lz|(Infz])?

0 if |x| >

if |z] <

N= N

Show that f € £Y(\), but M f ¢ 'Cloc

Problem 44 (Sarason). Suppose E C R™ (not assumed to be Borel measurable) and let C be a
family of cubes covering E such that

sup {£(Q)|Q € C} < oo.

Show there exists a sequence (Qx) C C of disjoint cubes such that

SOXQL) = 57 (M) (B).

k=1
Hint: Inductively choose Q. such that 2¢(Qy) is larger than the sup of the lengths of all cubes which
do not intersect Q1,...,Qr—1, with Qo = 0 by convention.

Problem 45. Let (X, 7) be a topological space. A net (z))xea is called universal if for every
subset Y C X, (z,) is either eventually in Y or eventually in Y°.

(1) (optional) Show that every net has a universal subnet.
(2) Show that (X, 7) is compact if and only if every universal net converges.
Note: You may use part (1) to prove part (2) even if you choose not to prove part (1).
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Hint for (1): Let (xy) be a net in X. Define a filter for (zy) to be a collection F of non-empty
subsets of X such that:

o F is closed under finite intersections,
o IfF € Fand F C G, then G € F, and
e (zy) is frequently in every F € F.
(1) Show that the set of filters for (z)) is non-empty.
(2) Order the set of filters for (xx) by inclusion. Show that if (F;) is a totally ordered set of
filters for (xy), then UF; is also a filter for (xy).
(8) Use Zorn’s Lemma to assert there is a maximal filter F for (x)).
(4) Show that for every Y C X, the net (x)) is either
(a) frequently in ENY for every E € F, or
(b) frequently in F\'Y for every F € F.
(5) In case (a) above, deduce that F' := {F € FIENY C FVE € F} is a filter for (zy) con-
taining F, and thus F = F'. Deduce Y € F.
(6) Do something analogous to the previous step for case (b) above to deduce X \'Y € F.
(7) Find a subnet of (xy) that is universal.

Problem 46. Suppose (X, 7) is a locally compact Hausdorff topological space and suppose K C X
is a non-empty compact set.

(1) Suppose K C U is an open set. Show there is a continuous function f : X — [0,1] with
compact support such that f|x =1 and f|ye = 0.

(2) Suppose f : K — C is continuous. Show there is a continuous function F' : X — C such
that f|x = F.

Problem 47. Suppose (X,7) is a locally compact topological space and (f,) is a sequence of
continuous C-valued functions on X. Show that the following are equivalent:
(1) There is a continuous function f : X — C such that f,|x — f|x uniformly on every
compact K C C.
(2) For every compact K C X, (fn|x) is uniformly Cauchy.

Problem 48 (Pedersen Analysis Now, E 1.3.4 and E 1.3.6). A filter on a set X is a collection F
of non-empty subsets of X satisfying

e A B € Fimplies AN B € F, and
e Ac Fand A C B implies B € F.
Suppose T is a topology on X. We say a filter F converges to x € X if every open neighborhood
U of z lies in F.
(1) Show that A C X is open if and only if A € F for every filter F that converges to a point
in A.
(2) Show that if 7 and G are filters and F C G (G is a subfilter of F), then G converges to x
whenever F converges to x.
(3) Suppose (zy) is a net in X. Let F be the collection of sets A such that (z)) is eventually
in A. Show that F is a filter. Then show that ) — «x if and only if F converges to x.

Problem 49 (Pedersen Analysis Now, E 1.3.5). A filter F on a set X is called an wltrafilter if it
is not properly contained in any other filter.
(1) Show that a filter F is an ultrafilter if and only if for every A C X, we have either A € F
or A° e F.
(2) Use Zorn’s Lemma to prove that every filter is contained in an ultrafilter.

Problem 50. Show the following collections of functions are uniformly dense in the appropriate
algebras:
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(1) For a < b in R, the polynomials R[] C C(]a, b],R).

(2) For a < b in R, the piece-wise linear functions PWL C C([a,b],R).

(3) For K C C compact, the polynomials C[z] C C(K).

(4) For R/Z, the trigonometric polynomials span {sin(27nz), cos(2rnz)n € NU{0}} € C(R/Z,R).

Problem 51. Let X,Y be compact Hausdorff spaces. For f € C(X) and g € C(Y), define
(f®g)(x,y) = f(x)g(y). Prove that span{f ® g|f € C(X) and g € C(Y)} is uniformly dense in
C(X xY).

Problem 52. Suppose X is locally compact Hausdorff and A C Cy(X,C) s a subalgebra which
separates points and is closed under complex conjugation. Show that either A = Cy(X, C) or there

is an 29 € X such that A = {f € Cyo(X,C)|f(xo) = 0}.

Problem 53 (Adapted from http://u.cs.biu.ac.il/~tsaban/RT/Book/Chapter3.pdf)). Let
UN be the set of ultrafilters on N. For a subset S C N, define [S] := {F € UN|S € F}. Show
that the function S+ [S] satisfies the following properties:
(1) [0] =0 and [N] = UN.
(2) For all S,T CN,
(a) [S] C [T ]1fandonly1fSCT
(b) [S]=[T] if and only if S =T
(¢) [SJU[T] =[SUT].
(d) [SIN[T] =[5NT].
(e) [S = [S]"
(3) Find a sequence of subsets (S,) of N such that [|JS,] # U[Sn]-
(4) Find a sequence of subsets (S,,) of N such that [ Sy,] # ([Sx]-

Problem 54 (Adapted from http://u.cs.biu.ac.il/~tsaban/RT/Book/Chapter3.pdf). As-
sume the notation of Problem [53l
(1) Show that {[S]|S C N} is a base for a topology on UN.
(2) Show that all the sets [S] are both closed and open in UN.
(3) Show that UN is compact.
(4) For n € N, let F,, = {S C Njn € S}. Show F, is an ultrafilter on N.
Note: Each F, is called a principal ultrafilter on N.
(5) Show that {F,|n € N} is dense in UN.
(6) Show that for every compact Hausdorff space K and every function f : N — K, there is a
continuous function f : UN — K such that f(F,) = f(n) for every n € N. Deduce that YN
is homeomorphic to the Stone-Cech compactification SN.

Problem 55. Suppose X is a normed space and Y C X is a subspace. Define Q : X — X/Y by
Qxr =1z +Y. Define
Qx| x/y = inf{|lz —yllx|ly € Y}.
(1) Prove that || - || x/y is a well-defined seminorm.
(2) Show that if Y is closed, then || - [| x/y is a norm.
(3) Show that in the case of (2) above, @ : X — X/Y is continuous and open.
Optional: is Q continuous or open only in the case of (1)?
(4) Show that if X is Banach, so is X/Y.

Problem 56. Suppose F' is a finite dimensional vector space.

(1) Show that for any two norms || -||; and || - ||2 on F, there is a ¢ > 0 such that || f||1 < ¢/ f||2
for all f € F. Deduce that all norms on F' induce the same vector space topology on F.
Note: You need only prove the result for one of R or C. You may use that the unit sphere
i K™ is compact with respect to the usual Euclidean topology.
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(2) Show that for any two finite dimensional normed spaces F; and Fy, all linear maps 7T :
Fy — F5 are continuous.
Optional: Show that for any two finite dimensional vector spaces Fy and Fo endowed with
their vector space topologies from part (1), all linear maps T : Fy — Fy are continuous.

(3) Let X, F' be normed spaces with F' finite dimensional, and let 7 : X — F be a linear map.
Prove that the following are equivalent:
(a) T is bounded (there is an R > 0 such that T'(B;(0x)) C Br(0r)), and
(b) ker(T) is closed.
Hint: One way to do (b) implies (a) uses Problem[55| part (3) and part (2) of this problem.

Problem 57 (Folland §5.1, #7). Suppose X is a Banach space and T' € £(X) = L(X, X). Let
I € L(X) be the identity map.
(1) Show that if || — T'|| < 1, then T is invertible.
Hint: Show that Y, ~o(I —T)" converges in L(X) to T .
(2) Show that if T € £(X) is invertible and ||S — T|| < ||T7*||~!, then S is invertible.
(3) Deduce that the set of invertible operators GL(X) C £(X) is open.

Problem 58 (Folland §5.2, #19). Let X be an infinite dimensional normed space.

(1) Construct a sequence (x,,) such that ||z,| =1 for all n and ||z, — x| > 1/2 for all m # n.
(2) Deduce X is not locally compact.

Problem 59. Consider the following sequence spaces.

0= { @) € |3 ] < o0} 2]y = fwnl
co = {(x) C C®lz,, — 0 as n — oo} [2]loc == sup |2n|

¢ = { (@) € ©| lim_a, exists | |2l := sup ||
0 = {(x) C C®sup |a,| < o0} |]loo = sup 2]

(1) Show that every space above is a Banach space.
Hint: First show (' and > are Banach. Then show co, ¢ are closed in £°.

(2) Construct isometric isomorphisms ¢ 2 ¢1 2 ¢* and (¢1)* = (.

(3) Which of the above spaces are separable?

(4) (Folland §5.2, #25) Prove that if X is a Banach space such that X* is separable, then X is
separable.

(5) Find a separable Banach space X such that X* is not separable.

Problem 60. Provide examples of the following:
(1) Normed spaces X,Y and a discontinuous linear map 7' : X — Y with closed graph.

(2) Normed spaces X,Y and a family of linear operators {T) } xca such that (Thz)xeca is bounded
for every x € X, but (||Th]|)xea is not bounded.

Problem 61. Suppose X and Y are Banach spaces and T : X — Y is a continuous linear map.
Show that the following are equivalent.

(a) There exists a constant ¢ > 0 such that ||[Tz||y > ¢||lz|x for all x € X.

(b) T is injective and has closed range.

Problem 62 (Folland §5.3, #42). Let E, C C([0,1]) be the space of all functions f such that
there is an xo € [0, 1] such that |f(z) — f(x0)| < n|z — x| for all € [0, 1].
(1) Prove that E, is nowhere dense in C([0, 1]).

(2) Show that the subset of nowhere differentiable functions is residual in C(]0, 1]).
10



Problem 63. Suppose ¢, ¢1,..., v, are linear functionals on a vector space X. Prove that the
following are equivalent.

(1) ¢ € >y, anpr, where aq,...,ap € F.

(2) There is an « > 0 such that for all z € X, |¢(z)| < amaxg=1,__, |¢r(x)|.

(3) Mi=1 ker(r) C ker(y).

Problem 64. Let X be a normed space.

(1) Show that every weakly convergent sequence in X is norm bounded.

(2) Suppose in addition that X is Banach. Show that every weak™® convergent sequence in X*
is norm bounded.

(3) Give a counterexample to (2) when X is not Banach.
Hint: Under || - ||so, & = €%, where c. is the space of sequences which are eventually zero.

Problem 65 (Goldstine’s Theorem). Let X be a normed vector space with closed unit ball B. Let
B** be the unit ball in X**, and let i : X — X™* be the canonical inclusion. Show that i(B) is
weak™ dense in B**.

Note: recall that the weak™ topology on X** is the weak topology induced by X*.

Problem 66 (Banach Limits). Show that there is a ¢ € (£°°)* satisfying the following two condi-
tions:

(1) Letting S : £>° — £ be the shift operator (Sz), = xp41 for * = (Ty)nen, p = p o S.

(2) For all z € ¢*°, liminf z,, < p(z) < limsup x,.

Problem 67. Let X be a compact Hausdorff topological space. For x € X, define ev, : C(X) = F
by evy(f) = f(z).
(1) Prove that ev, € C(X)*, and find | evy ||.
(2) Show that the map ev : X — C'(X)* given by x — ev, is a homeomorphism onto its image,
where the image has the relative weak™® topology.

Problem 68. Suppose X,Y are Banach spaces and 7' : X — Y is a linear transformation.
(1) Show that if T' € L(X,Y), then T' is weak-weak continuous. That is, if xx — = in the weak
topology on X induced by X*, then Tx) — Tz in the weak topology on Y induced by Y*.
(2) Show that if T is norm-weak continuous, then 7' € £(X,Y).
(3) Show that if 7" is weak-norm continuous, then 7" has finite rank, i.e., TX is finite dimen-
sional.
Hint: For part (3), one could proceed as follows.
(a) First, reduce to the case that T is injective by replacing X with Z = X/ker(T) and T with
S:Z =Y gien by x+ker(T) — Tx. (You must show S is weak-norm continuous on Z.)
(b) Take a basic open setU = {z € Z||pi(2)| < ¢ for alli=1,...,n} C ST Bi(0y). Use that S is
injective to prove that (), ker(p;) = (0).
(c) Use Problem @ to deduce that Z* s finite dimensional, and thus that Z and TX = SZ are
finite dimensional.

Problem 69. Suppose X is a Banach space. Prove the following are equivalent:

(1) X is separable.
(2) The relative weak™ topology on the closed unit ball of X* is metrizable.

Deduce that the closed unit ball of X* is weak* sequentially compact.

Problem 70. Suppose X is a Banach space. Prove the following are equivalent:
(1) X is separable.
(2) The relative weak topology on the closed unit ball of X is metrizable.
11



Prove that in this case, X is also separable.

Problem 71 (Eberlein-Smulian). Suppose X is a Banach space. Prove the following are equivalent:
(1) X is reflexive.
(2) The closed unit ball of X is weakly compact.
(3) The closed unit ball of X is weakly sequentially compact.
Optional: How do you reconcile Problems @ and ? That is, how do you reconcile the fact
that there exist separable Banach spaces which are not reflexive?

Problem 72. Consider the space L?(T) := L?(R/Z) of Z-periodic functions R — C such that
f[(),l] |f|? < oc. Define

(fig) = fg.

[0,1]

(1) Prove that L?(T) is a Hilbert space.

(2) Show that the subspace C(T) C L?(T) of continuous Z-periodic functions is dense.

(3) Prove that {e,(z) := exp(2winx)|n € Z} is an orthonormal basis for L?(T).
Hint: Orthonormality is easy. Use (2) and the Stone- Weierstrass Theorem to show the
linear span is dense.

(4) Define F : L*(T) — (*(Z) by F(f)n := (f,en)r2(m) = fol f(z) exp(—2minz) dx. Show that
if f € L*(T) and F(f) € ¢(Z), then f € C(T), i.e., f is a.e. equal to a continuous function.

Problem 73. Suppose H is a Hilbert space, E C H is an orthonormal set, and {ej,...,e,} C E.
Prove the following assertions.
(1) If =" cie;, then ¢; = (2, ¢;).
(2) The set E is linearly independent.
(3) For every x € H, Y i (x,e;)e; is the unique element of span{ey,...,e,} minimizing the
distance to z.
4) (Bessel’s Inequality) For every z € H, |lz]|? > >0 [{z,e:)|?.
) If H is separable, then E is countable.
) The set E can be extended to an orthonormal basis for H.
) If E is an orthonormal basis, then the map H — ¢?(E) given by z +— ({z,-) : E — C) is a
unitary isomorphism of Hilbert spaces.

(
(5
(6
(7

Problem 74. Let X be a locally compact Hausdorff space and suppose ¢ : Cy(X) — C is a linear
functional such that ¢(f) > 0 whenever f > 0. Prove that ¢ is bounded.
Hint: Prove that {p(f)|0 < f < 1} is bounded.

Problem 75. Suppose X is an LCH space, K C X is compact, and Uy, ..., U, are open sets such
that K C |J_, U;. Show there exist g1, ..., g, € Ce(X) such that g; < U; for all ¢ and """ g, =1
on K.

Problem 76. Suppose X is an LCH space, p is a o-finite Radon measure on X, and F is a Borel
set. Prove that for every £ > 0, there is an open set U and a closed set F' with FF C £ C U such
that u(U \ F) < e.

Problem 77. Suppose X is an LCH space and ¢ € Cy(X)*. Prove there are finite Radon measures
o, H1, f2, 43 on X such that

3
o) =32 [ fam Vf e Co(X).
k=1
Problem 78 (Folland §3.1, #3 and §3.2, #8). Suppose p is a positive measure on (X, M) and v

is a signed measure on (X, M).
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(1) Prove that the following are equivalent.
(a) vLpu
(b) |v] L p
(¢) vy Lpandv_ L p.

(2) Prove that the following are equivalent.
(a) v <
(b) |v| < p
(¢) vy < pand v_ < p.

Problem 79 (Folland §3.1, #3). Let v be a signed measure on (X, M). Prove the following
assertions:

(a) L1(v) 2151(@\)‘

(b) If f € L), |[ fdv| < [Ifld]v].

(c) If E€ M, [v|(E) =sup{|[, fdv||-1< f <1}

Problem 80 (Folland §3.1, #6). Suppose

V(E)::/Efd,u EcM

where p is a positive measure on (X, M) and and f is an extended p-integrable function. Describe
the Hahn decompositions of v and the positive, negative, and total variations of v in terms of f
and pu.

Problem 81 (Adapted from Folland §3.2, #9). Suppose p is a positive measure on (X, M).

Suppose {v;} is a sequence of positive measures on (X, M) and p is a positive measure on (X, M).

Prove the following assertions.

(a) If {v;} is a sequence of positive measures on (X, M) with v; L y for all j, then 322, v; L p.

(b) If v1,vo are positive measures on (X, M) with at least one of v1,1, is finite and v; L p for
j=1,2, then (v; —12) L p.

(c) If {;} is a sequence of positive measures on (X, M) with v; < p for all j, then 3772, v; < p.

(d) If v1,vo are positive measures on (X, M) with at least one of vy, 15 is finite and v; < p for
j=1,2, then (1 — 1) < p.

Problem 82. Let F': R — R be a non-decreasing conitnuously differentiable function, and let ug
be the corresponding Lebesgue-Stieltjes measure on R. Prove that up < A (Lebesgue measure)
and ‘ZL—)\F = f" a.e. In other words, prove that

pr(E) :/ #dx VE € Bg.
E

Hint: First prove the above equality for intervals. Then use Problem [0,
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