Proper If K/F, L/F are extensions, K is algebraically closed,
L/F is algebraic, Then I an embedding L Cook (of extensions).

Corollevies: 1) if F is an algebraic closure of F trum F contains a copy of any algebraic extension of F.

4 Any two algebraic closures of F are isomorphic (over F) $\varphi: K_1 \longrightarrow K_2 \quad \text{proof}: \quad \varphi \text{ exists}, \quad K_2 / \varphi(K_1) \text{ is algebraic},$ So $K_2 = \varphi(K_1) \quad \text{Since} \quad \varphi(K_1) \text{ is}$ algebraically closed.

3 If K is in algebraically closed extension of F, then Fembedding Fem K, so alg. closure is minimal algebraically closed extension of F.

Proof of Propr By Zorn Lema.

Let L be the set of embeddings $E \to K$ over F,

where L/E/F. $L \neq \emptyset$ since $(F \to K) \in L$.

We say that $(E, \stackrel{q}{\to} K) \leq (E_2 \stackrel{q_2}{\to} K)$ if $E, \subseteq E_2$ and $(F, \stackrel{q}{\to} K) \leq (E_2 \stackrel{q_2}{\to} K)$ if $E \subseteq E_2$ and $(F, \stackrel{q}{\to} K) \leq (E_2 \stackrel{q_2}{\to} K)$ if $(E, \stackrel{q}{\to} K) \leq (E_2 \stackrel{q}{\to} K)$ if $(E, \stackrel{q}{\to} K)$ if $(E, \stackrel{q}{\to} K)$ if (E

 $\left\{ E_{\alpha} \xrightarrow{\varphi_{\alpha}} K : \alpha \in \Lambda \right\}$

Then E + K is an upper bound of C.

Zorris lema implies 7 moxil E + K.

Claim: E=L.

if not, let a E L \ E.

d is algebraic over F so over E.

let f = md, E.

The pol-l 4(f) splits in K,

So it has a root. Let p be avoit of P(f).

Then F extension q of q,

 $E(\kappa) \xrightarrow{\widetilde{\varphi}} K(\beta) = K$

and this contradicts maximality of q.

 $f \in F(x)$, deg f = n, # roots of f in K/F?

In Some extension (in the splitting field of f),

f has n roots (counting multiplicities.

$$f(x) = (\chi - \chi_1)^{\gamma n_1} \cdot \dots \cdot (\chi - \alpha_k)^{m_k} \qquad \qquad \gamma m_1 + \dots + m_k = \gamma.$$

Def f is separable if it havexactly degt roots in its splitting field. (No multiple roots).

• f has a multiple root a iff $f'(\alpha) = 0$, that is, iff f & f' have a common root, iff $gcd(f,f') \neq 1$ (in F(x), although it doesn't depend on F).

. If f is irreducible, may f be inseparable?

fisirral f is inseparable iff f'=0This is possible if the f'=0for $f(x)=x^p-1\in F(x)$, f'=0.

If $\operatorname{char} F = P$, f' = 0 iff $f(X) = g(x^{P})$.

So an irreducible f is inseparable iff $f(x) = g(\chi^p)$, $g \in F(x)$

Det a is separable over F if Max is separable.

K/F is separable if Ya EK is separable.

F is perfect if Y its algebraic extension is separable. (if Y irr-le pol-l from F(X) i's seperable)

Let $F = F_p(t)$ - rational fus over F_p . Let $f(x) = x^p - t$. Then f' = 0.

F = field of fractions of Fp[t].

eisenstein criterion:

 $f = a_n x^n + \cdots + a_0$, p_i , $p_$ then f is irreducible.

t is prome in Fo[t], so f is irreducible over Fo[t], and by Garss's Lemm, fisisreducible over F.

Let & be a root of f. $\alpha^{P} = t$, $\alpha = \int t$, in $F(\alpha)$, $f(x) = (x-\alpha)^{P}$. If charF=P, ther (a+b) = ap+bp.

so x is a multiple root of f.

If charF=P, P:F->F
is a nom-sm.

it's called the Frobenius Endonorphism.

 $\oint \text{ may not be surjective: eg when } F = F_p(t).$

 $\oint (u(t)) = u(t^p)$ $\oint is not surjective.$ $f \mapsto t^p$ $f \mapsto a^p = a$

if F is finite, & is surj. be it's injective (F/F is a follow).

Then & is the Forbenius Automorphism.

Therem F is perfect iff its FA is surjective.

of finite
characteristic