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1: Give an example of an infinite Abelian group which doesn’t have nontrivial infinite subgroups.

2: Show that 22
n + 1 and 22

m + 1 are coprime for n ≠m.

3: Suppose ∃c1, c2 > 0 so that c1 < pn
n log(n)

< c2 for all n ≥ 1. Show that ∑∞
n=1

1
pn

= ∞.

4: Show that the algebraic numbers are countable.

5: Show that x ∈ Q⇔ x has a finite continued fraction expansion.

6: Find the continued fraction expansions for
√

2 and
√

3 and
√
m2 + 1.

7: Show that the set of non-normal numbers is uncountable.

8: Show that changing the squares in Champernowne’s constant to 17 gives a normal number, i.e. that the number
0.1723175678171011121314151717181920212223241726... is normal.

9: Show that [(√2 − 1)n → 0] ⇒ √
2 /∈ Q.

10: Show that π(n) ∼ n
log(n)

⇔ pn ∼ n log(n).

11: Show that the multinomial coefficients (except for 1) in (1 +⋯ + 1)p are divisible by p.

12: Show that the last nonzero base-3 digit of n2 is 1.

13: Show that Zp (the integers modulo p) is a field for prime p.

14: Show that the fields Γ = {a + bi ∶ a, b ∈ Z} and M = {(a −b
b a

) ∶ a, b ∈ Z} are isomorphic.

15: Show that {a + b√2 ∶ a, b ∈ Z5} is a field, and that it is isomorphic to {(a 2b
b a

) ∶ a, b ∈ Z5}.

16: Show there is a finite field with p2 elements for any prime p.

17: Show that there are infinitely many fields of characteristic p for any prime p, up to isomorphism. (The
characteristic of a field is the least n so that 0 = 1 +⋯ + 1 (n times), if such a number exists).

18: Give an example of a number-theoretical ring with infinitely many units.

19: Show that Dirichlet’s theorem doesn’t hold for x ∈ Q. (Dirichlet’s theorem states that for any x ∉ Q, there are

infinitely many p
q
∈ Q so that ∣x − p

q
∣ < 1

q2
).
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20: Show that there are uncountably infinitely many fields of characteristic p for any prime p.

21: Prove that it is not true that if d(A) > 0 then ∃d such that A contains arbitrarily long arithmetic progressions
with step size d (find a counterexample).

22: Show that the inequality in Hurwitz’s theorem can’t be improved (i.e. that there is no c > √
5 so that there

exist infinitely many p
q
∈ Q so that ∣x − p

q
∣ < 1

cq2
) for x = ϕ, the golden mean.

23: What are some other x for which this inequality can’t be improved?

24: Are the normal numbers all transcendental?

25: If f, g ∶ N→ N are injective and f ∼ g, under what conditions is f−1 ∼ g−1.

26: If A = {a1, . . . , an, . . .} ⊆ N and an ∼ f(n) where ∣f(n)∣ ≤ P (n) (P is some polynomial), is it true that

AA−1 = { ai
aj
∶ ai, aj ∈ A} is dense in R+.

27: Is it true that ∑nk=2 1
k log(k)

∼ log(log(n))?

28: Is it true that ∑nk=1 1
pk

∼ log(log(n))?

29: Let G = {e, a, a2, . . . , ak−1} be a cyclic group. How many automorphisms does it have?

30: Show that H (the quaternions) is isomorphic to {(u −v
v̄ ū

) ∶ u, v ∈ C}.

31: Show that there is a field of 73 elements.

32: Create a natural rational sequence in [0,1] which is uniformly distributed in [0,1].

33: (Show the three statements of Szemerédi’s theorem are equivalent - formulate this problem better, see september
8 notes)

34: Formulate a finitistic version of Sárközy’s theorem which is equivalent to the standard version.

35: How many automorphisms does a field with p2 elements have?

36: Show that if G is a group of prime cardinality p then G is cyclic.

37: Show that the sequence {nα (mod 1)}∞n=1 for α ∉ Q is uniformly distributed in [0,1].

38: If A ⊆ N, d̄(A) > 0, is there necessarily a d ∈ N so that A contains arbitrarily long arithmetic progressions with
difference d?

39: Let Aα = {⌊n
α
⌋ ∶ n ∈ N} for 0 < α ≤ 1. Prove that d(Aα) = α

40: Show that d̄(P ) = 0, where P is the set of primes.

41: Give an example of sets A,B ⊆ N so that d̄(A) = 1 = d̄(B) but A ∩B = ∅.

42: Is it true that d∗(A ∪B) ≤ d∗(A) + d∗(B) for any A,B ⊆ N?
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43: Show that A ⊆ N is thick (contains arbitrarily long intervals) if and only if d∗(A) = 1.

44: Show that d∗(S) < 1 where S is the set of square-free numbers.

45: Show that d∗(S) = lim infN→∞ (minm
∣S∩{m+1,...,m+N}∣

N
) = 0 where S = the square-free numbers.

45: Let an = ⌊2c⌋n, bn = ⌊2cn⌋ for some c > 1. Prove that d∗({an ∶ n ∈ N}) = 0 = d∗({bn ∶ n ∈ N}).

46: Find the formula for the nth Fibonacci number.

47: Show that if d(A) > 1
2

then x + y = z is soluble for x, y, z ∈ A.

48: Show that (nc) and (log1+ε(n)) are dense mod 1 (for 0 < c < 1 and ε > 0).

49: Let Γ = {2n3m ∶m,n ∈ N} = {n1 < n2 < ⋯ < nk < ⋯}. Show that ni+1

ni
→ 1.

50: Prove that x is base-r normal if and only if {rnx (mod 1) ∶ n ∈ N} is uniformly distributed.

51: Show that d ({n21 + n22 ∶ n1, n2 ∈ N}) = 0.

52: Are there two density 0 sets A,B ⊆ N so that AB = {ab ∶ a ∈ A, b ∈ B} = N?

53: Let G be a group and H ⊆ G be a subgroup. Prove that G is representable as a disjoint union of cosets of H:
G = ⊔a∈Il aH = ⊔b∈Ir Hb for some Il, Ir ⊆ G.

54: Show that there is no 3-dimensional complex number field.

55: Let x, y ∈ {0,1}N be binary sequences. Show that d(x, y) = ∑∞
i=1

∣xi−yi∣
2i

is a metric on {0,1}N.

56: Show that {0,1}N with the metric above is homeomorphic to C (the Cantor set).

57: Let C be the classical (middle-thirds) Cantor set. Show that C +C = [0,2] and C −C = [−1,1].

58: Is it true that K +K = [0,2] and K −K = [−1,1] where K ⊂ [0,1] is an arbitrary Cantor set?

59: Let ω ∈ {0,1}N be a binary sequence. Let Ω = {σkω ∶ k ∈ N}, where σ is a left shift of ω (truncating the initial
bit: i.e. if ω = 10110011.. then σω = 0110011...). Show that Ω = {0,1}N if and only if ω is weakly normal (use the

metric defined on {0,1}N above, d(x, y) = ∑∞
i=1

∣xi−yi∣
2i

).

60: Let {xn ∶ n ∈ N} ⊂ [0,1] be a dense image of a sequence (xn). Show that there is a permutation of the sequence
(xn), (yn), which is u.d. mod 1.

61: x is base-2 weakly normal if every finite binary word appears in its binary expansion. Show that almost every
x ∈ (0,1) is base-2 weakly normal.

62: Show that C is not homeomorphic to [0,1].

63: Show that [0,1] does not have measure zero.
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64: Let (an) be a sequence so that 0 < ∑∞
n=1 an < 1. Construct a set by removing the open interval of length a1

centered at 1
2

from [0,1], then removing two open intervals each of length a2
2

from the left and right intervals of the
remaining set, with each removed interval centered at the midpoint of the interval of the remaining set. Continue
by removing an open interval of length a3

4
from each of the four remaining contiguous intervals (again centered at

the middle). Let A = ⋂∞i=1Ki, where Ki is the set obtained by stopping after i iterations of the above process. Show
that A does not have measure 0.

65: Show that the sets {0,1}N,{0,1}Z,{0,1, . . . ,m − 1}N, and {0,1}N × {0,1}N are all homeomorphic.

66: Let (xn) ∈ {0,1}N be the binary expansion of a base-2 normal number x. Show that the number whose binary
expansion is (xan+b) is normal.

67: Let a set B be constructed by removing an arbitrary number of open intervals from [0,1], then removing
some other arbitrary number of open intervals from the remaining set, and continuing this process ad infinitum only
requiring that the intervals do not touch and that the total length of the (closed) intervals in the remaining set
decreases after each step to a limiting value of 0. Show that B is homeomorphic to C (the Cantor set)

68: Let S ⊂ P and let AS = {x ∶ x = ∏p∈S p
αp , αp ∈ N}. Is it true that d(AS) > 0 if ∑p∈P∖S 1

p
< ∞?

69: Let P1 ⊔ P2 = P so that ∑p∈P1

1
p
= ∑p∈P2

1
p
= ∞. And let Ai = {x ∶ x = ∏p∈Pi

pαp , αp ∈ N} for i = 1,2. Is it true

that d(A1) = d(A2) = 0?

70: Show that Df , the set of points of discontinuity of a monotone function f , is at most countable.

71: Show that the endpoints of the removed intervals in the iteration process of constructing C, the classical Cantor
set, are dense in C.

72: Show that `∞(N), the set of all bounded sequences in RN, with metric d(x, y) = supi∈N ∣xi−yi∣, is a metric space.

73: Consider the sequence 1,2,4,8,1,3,6,1, . . . , the first digit of 2n. Show that the symbol 7 is more frequent than
the symbol 8 in this sequence (i.e. the density of the indices where 7 appears is greater than the density of the indices
where 8 appears).

74: Show that C[0,1] with the metric d(f, g) = maxx∈[0,1] ∣f(x) − g(x)∣ is complete metric space.

75: Let B = {f ∈ C[0,1] ∶ ∣∣f ∣∣ ∶= maxx∈[0,1] ∣f(x)∣ ≤ 1} is bounded and closed but is not compact.

76: Show that C +C = [0,2] by using the fact that C +C is dense in [0,2].

77: Show that {0,1}N with the metric d(x, y) = ∑∞
i=1

∣xi−yi∣
2i

is a compact metric space.

78: Show that R[x] being dense in C[0,1] is equivalent to trigonometric polynomials (finite linear combinations of

e2πinx for varying n) being dense in C[0,1] with metric d(f, g) = ∫ 1
0 ∣f(x) − g(x)∣dx.

79: Is there a Cantor set containing only irrational numbers?

80: Show that n2α is u.d. mod 1.

81: Show that ((nα,nβ)) ∈ ([0,1]2)N is u.d. mod 1 iff α and β are linearly independent over Q.

82: Let f(x) ∈ R[x] and assume that at least one coefficient of f (other than the constant term) is irrational. Show
that (f(n)) is u.d. mod 1.
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83: Show that for distinct primes p and q, pq−1 + qp−1 ≡ 1 (mod pq).

84: Generalize a proof given in class about the irrationality of
√

2 to any quadratic irrationality.

85: Generalize a proof given in class about the irrationality of
√

2 to any quadratic irrationality.

86: Give an analogue in Gaussian integers of Furstenburg’s proof of the infinitude of primes.

87: Show that d∗(P ) = 0.

88: Show that if an+1
an

≥ λ > 2 for all n, then d(FS(an)) = 0 where FS(an) = {∑ki=1 ani ∶ ni ∈ N}.

89: Show, using Schur’s Theorem, that for any n ∈ N, if p ∈ P is large enough then there are distinct x, y, and z,
not congruent to 0 mod p, so that xn + yn ≡ zn (mod p).

90: Show that “N = ⋃ri=1Ci ⇒ x, y, x + y ∈ Ci for some x, y and i” is equivalent to Schur’s Theorem.

91: Formulate a finitistic version of Van Der Warden’s Theorem and prove its equivalence to the standard version.

92: Show that x + y = 3z is not partition regular.

93: Show that the set of square-free numbers is not syndetic.

94: Give countably many counterexamples to problem 8 on the midterm (which states that for any x ∉ Q with
x > 1, {xn ∶ n ∈ N} is dense in [0,1]) using the idea discussed in class.

95: Show that 1C , the characteristic function of the Cantor set, is a pointwise-converging limit of a sequence of
continuous functions on [0,1].

96: Show that {a + b 3
√

2 + c 3
√

4 ∶ a, b, c ∈ Q} has multiplicative inverses for all nonzero elements.

97: Show that {a0 + a1 5
√

2 + a2 5
√

22 + a3 5
√

23 + a4 5
√

24 ∶ ai ∈ Q} ∖ {0} has multiplicative inverses.

98: Show that {a + b√2 + c√3 + d√6 ∶ a, b, c, d ∈ Q} ∖ {0} has multiplicative inverses.

99: Show that if d∗(A) > 0 then A −A is syndetic.

100: Prove that {n ∶ nα mod 1 ∈ (a, b)} and {n ∶ n2α mod 1 ∈ (a, b)} are syndetic.

101: Show that the sequence (2nx), for n ∈ N, is not well-distributed mod 1 for any x.

102: Show that Champernowne’s number 0.1234567891011121314 . . . is transcendental.

103: Show that d∗(S) = 0 where S = {a2 + b2 ∶ a, b ∈ N}.

104: Show that the set of square-free numbers is not piecewise syndetic.

105: Show that for any finite partition N = ⋃ri=1Ci, at least one Ci is piecewise syndetic.

106: Show that if S is piecewise syndetic and S = ⋃ri=1Ci then at least one Ci is piecewise syndetic.

107: Show that if f1 and f2 are Bohr almost periodic (B.A.P.) then f1 + f2 and f1 ⋅ f2 are too.
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108: Show that sin(n) is B.A.P.

109: Show that 1A, the characteristic function of A = {⌊nα⌋, n ∈ Z} is B.A.P.

110: Show that sin(x) + cos(√2x) is B.A.P. on R (give a good definition for B.A.P. on R).

111: Show that 1Q, the characteristic function of Q cannot be a pointwise-converging limit of a sequence of con-
tinuous functions on [0,1].

112: Show, using Van der Warden’s theorem, that piecewise syndetic sets are AP -rich.

113: Show that P − 1 and P + 1 are divisible sets.

114: Show that P ± d is not divisible if d ≠ 1.

115: A finitistic version of Sárközy’s Theorem is: For any ε > 0 there is an L ∈ N so that if b − a > L then for any

A ⊆ {a, a + a, . . . , b} with ∣A∣

b−a
> ε there is an n ∈ N and some x, y ∈ A so that x − y = n2. Prove this statement’s

equivalence with the standard form of Sárközy’s Theorem.

116: Show that d̄ (A ∩ (A − n2)) > 0 if and only if there is an n so that A ∩ (A − n2) ≠ ∅.

117: Show that ϕA(n) = d̄ (A ∩ (A − n2)) is positive definite for any A ⊆ N with d̄(A) > 0.

118: Show that ϕ(n) = ⟨Unv, u⟩ is positive definite for any unitary matrix U ∈Mn(C) and v, u ∈ Cm.

119: Show that ϕ(n) = ∫T e2πinx dµ is positive definite.

120: Show that qr+1 > qr−1 if qn is the denominator of the nth convergent to a continued fraction.

121: As in the above exercise, find out what the next number is after
√

5 and
√

8 (if we don’t allow ar to be 2 this
time).

122: Show that if d̄(A), d̄(B) > 0 then (A −A) ∩ (B −B) is syndetic.

123: Factor x3 +Dy3 +D2z3 − 3Dxyz = 1 if D is a cube. Thus show the equation is insoluble.

124: Give a matrix representation of the Pellians corresponding to Z[√2,
√

3] and Z[ 4
√

2].

125: Show that if f ∶ (0,1) → R is continuous and satisfies f (x1+x2

2
) ≤ f(x1)+f(x2)

2
for any x1, x2 ∈ (0,1) (i.e. f

is midpoint convex) then f(α1x1 + α2x2) ≤ α1f(x1) + α2f(x2) for any α1, α2 ≥ 0 where α1 + α2 = 1 and for any
x1, x2 ∈ (0,1) (i.e. f is convex in the standard sense).

126: Give an example of a discontinuous function on (0,1) which is midpoint convex but not convex.

127: Show that α1x1 + α2x2 ≥ xα1

1 xα2

2 for any α1, α2 ≥ 0 where α1 + α2 = 1.

128: Show that α1x1 +⋯ + αkxk ≥ xα1

1 ⋯xαk

k for any α1, . . . , αk ≥ 0 where α1 +⋯ + αk = 1.

129: Show that if f is convex then f(α1x1 + ⋯ + αkxk) ≤ α1f(x1) + ⋯ + αkf(xk) for any α1, . . . , αk ≥ 0 where
α1 +⋯ + αk = 1.

130: Suppose d(A), d(B) exist. Is it necessarily true that d(A ∩B) or d(A ∪B) exist?
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131: Show that f is continuous (by the ε-δ definition) iff for any open set U , f−1(U) is open.

132: Show that an additive subgroup S of Rn is a lattice if and only if S is discrete.

133: Show that if d∗(A) > 0 then for any increasing sequence (ni) ⊆ N there exist indices i < j so that we have
d∗ (A ∩ (A − (nj − ni))) > 0.

134: Show that {⌊nα⌋ ∶ n ∈ N} is a set of recurrence for any irrational α.

135: Show that any thick set contains a set of differences.

136: Let Gi be the set of #s representable as a product of i distinct prime powers. Show d(Gi) = 0.

137: Show that if d(A) = 1 then d(A ∩ (A − n)) = 1 for any n ∈ N.

138: Show that if d∗(A) = 1 then d∗(A ∩ (A − n)) = 1 for any n ∈ N.

139: Let f ∶ Z → C be a bounded function such that there is a sequence (Ni) which increases to ∞ and

limi→∞
1
Ni
∑Ni

k=1 f(k)f(k + n) exists. Show that ϕ(n) = limi→∞
1
Ni
∑Ni

k=1 f(k)f(k + n) is positive definite.

140: Show that ϕ(n) = ⟨Unf, f⟩ is positive definite for any f if U is unitary.

141: Show that ρ(A,B) = µ(A△B) is a pseudometric on the set of measurable sets in a measure space (namely,
show that the triangle inequality holds).

142: Show that the transformation T given by x↦ 2x (mod 1) on [0,1] is ergodic.

143: Show that the transformation T given by x↦ x + α (mod 1) on [0,1) is ergodic iff α ∉ Q.

143: Show that for any unitary linear transformation U ∶ Cn → Cn, Cn can be decomposed into the direct sum
Cn = {x ∶ Ux = x} ⊕ Span{x −Ux ∶ x ∈ Cn}.

144: Derive from the fact that 1
N ∑N−1

n=0 f(Tnx) → ∫ f for almost every x and for every f iff T is ergodic and the
fact that x↦ 2x (mod 1) is ergodic that almost every number in [0,1) is base-2 normal.

145: Show that 1
N ∑N−1

n=0 µ(A ∩ T −nB) → µ(A)µ(B) iff 1
N ∑N−1

n=0 µ(A ∩ T −nA) → µ2(A).

146: Modify the proof that in any 3 consecutive convergents to a continued fraction for an irrational number w

there is at least one pn
qn

with ∣pn
qn
−w∣ < 1

√
5q2n

. Show instead that if we don’t allow ar to be 1 we can replace
√

5 by√
8 in the resulting statement.

147: Using the integral ∫ 1
0 ∫ 1

0
dxdy
1−xy

= π2

6
, show that ∑∞

n=1
1
n2 = π2

6
.

148: Show that if S ⊂ R and µ(S) > 1 then S − S contains a nonzero integer.

149: Let L be a lattice in R2 with fundamental domain ∆L = {α1x1 + α2x2 ∶ 0 ≤ α1, α2 < 1} (where x1, x2 are the
basis vectors of L). Show that if S ⊂ R2 with µ(S) > µ(∆L) then S − S contains a nonzero point of L.

150: Let L be a lattice in R as above. Show that if K ⊂ R2 is a symmetric convex body with µ(K) > 4µ(∆L) then
K contains a nonzero point of L.

151: Show that for any prime p, the multiplicative group Z∗p of invertible elements of Z/pZ is cyclic.
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152: Let p be a prime of the form 4k + 1, and let u ∈ {1, . . . , p − 1} so that u2 ≡ −1 (mod p). Now Let L =
{(x, y) ∈ Z2 ∶ y ≡ ux (mod p)}. Show that L is a lattice with µ(∆L) = p, and use this result to deduce that p = a2 + b2
for some integers a, b.

153: Show, using an ergodicity argument, that if A ⊆ N with d(A) > 0 then A −A is syndetic.

154: Show that the countable union of sets which are closed and nowhere dense cannot cover [0,1].

155: Show that the set P
P
= {p

q
∶ p, q ∈ P} is dense in R+.

156: Let G = {g1, . . . , gn} be a group, and let its group algebra over R be {∑ni=1 αigi ∶ αi ∈ R}. If multiplying two
elements of this set gives (∑ni=1 αigi) (∑ni=1 βigi) = ∑ni,j=1 αiβjgigj = ∑nk=1 γkgk, give a formula for γk.

157: Show that the set of Liouville numbers is dense Gδ.

158: Show that Champernowne’s number 0.123456789101112... is transcendental but not Liouville.

159: Show that the set of Liouville numbers contains a shift of any countable set.

160: Give an example of A ⊆ N where d∗(A) > 0 but A +A is not syndetic.

161: Show that the numbers {√pn ∶ n ∈ N} are linearly independent over Q.

162: Prove that any metric space X can be completed (similarly to the proof in Katok).

163: Let h(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x ∉ [−1,1]
1 if x ∈ [−1,1] . For any ε > 0, construct f ∈ C∞ so that ∫R ∣f(x) − h(x)∣dx < ε

164: Let Pk = {2e13e25e3⋯pekk ∶ ei ∈ N}. Show that d∗(Pk) = 0.

165: Prove that f ∈ C[0,1] is uniformly continuous.

166: Let `2R = {(xn) ∶ xn ∈ R,∑∞
i=1 x

2
i < ∞}, and d(x, y) =

√
∑∞
i=1(xi − yi)2 for x = (xn), y = (yn) ∈ `2R. Show that

(`2R, d) is a metric space.

167: Show that (`2R, d) as defined above is a complete metric space.

168: In a finite field Z/pZ, what is the number e?

169: What can you say about quadratic equations over H?

170: Show that R/Q is not Hausdorff.

171: Find a value of α ∉ Q for which the set {n2α −m2 ∶ n,m ∈ Z} is not dense in R.

172: Find all values of α ∉ Q for which the set {n2α −m2 ∶ n,m ∈ Z} is not dense in R.

173: Show that for any sequence (ni) ⊆ N with ni → ∞ as i → ∞, the set of finite sums denoted by FS ((ni)) =
{ni1 +⋯ + nik ∶ i1 < ⋯ < ik, k ∈ N} has (FS ((ni))) ∩mN ≠ ∅ for all m ∈ N.

174: Is it true that any A ⊆ N with d(A) > 0 contains a shift of FS((ni)) for some ni ↗∞?
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175: Call A ⊆ N an IP* set if A ∩ FS((ni)) ≠ ∅ for all ni ↗ ∞. Show that if A1,A2 are IP*, then A1 ∩A2 is also
IP*.

176: Verify that if n2α mod 1 gets arbitrarily close to 0 or 1 then n2α mod 1 is dense in [0,1].

177: Prove that n3α mod 1 is dense in [0,1] using similar reasoning as in class.

178: Prove that if α ∉ Q and 1
α
+ 1
β
= 1, then N = {⌊nα⌋ ∶ n ∈ N} ⊔ {⌊nβ⌋ ∶ n ∈ N}.
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