Monday, February 26, 2018 14:16

Lemmer Let X and Y be top. sp. with Y compact. Let PEX and Suppose that V is open in X x Y and SpS xY \(\in V.\)
Thun there is a set U open in X s.t. PEU and UXY \(\in V.\)

Pf Let $J = \{(A,B) : A \circ pon m \times B \circ pon m \times A \times B = V \}$. Then, $U = A \times B = V \}$.

Since $V = \{(A,B) : A \circ pon m \times X \times V \}$. $V = \{P\} \times Y \}$ which is compact since $Y = \{P\} \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times X \times V \}$. $V = \{P\} \times Y \}$ which is compact.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$ which is compact since $Y = \{P\} \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$ which is compact since $Y = \{P\} \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m \times Y \}$.

Hence $J = \{(A,B) : A \circ pon m$

of Case 1: Suppose f(p,y)=1 $\forall y\in Y$. Let $W=\{z\in C: Rez > 0\}$. W is open and does not contain the origin. Let $V=f^{-1}(w)$ then V is open in $X\times Y$ and $\forall y\in Y$, $f(p,y)=1\subseteq W$ 5 >

(P. 19) € V. Thus EP3×Y ∈ V. Hence, by the lumin, JU m open now of p in X st Ux y & V. define you on Uxy by $V(x,y) = L_{oq}(f(x,y))$ (principal Log)-Then I is a wontinoous log.

Case 2: Define g: X, Y -> Cx by g(x,y) = \frac{f(x,y)}{f(p,y)}. (geneal) then g is continuous and $\forall y \in Y$, $g(\rho_1 y) = 1$. hence case I applies to g, so F (U, K) s.t. Vis an open MW of P in X and vn V is a continuous logarithm of glass And VyEY, U(Pry) = 0. define $\Psi_{U}: X \times Y \longrightarrow C^{\times}$ by $\Psi_{U}(x, y) = \Psi_{U}(x, y) + \Psi_{P}(y)$. then $e^{\int_{U}(x,y)} = g(x,y) f(\rho,y) = f(x,y).$

and $\int_{U} (p,y) = \Psi(p,y) + \Psi_{p}(y) = \Psi_{p}(y)$ so (a) is proved.

b) Suppose Y is connected, and (U, Pu), (V, Yv) are two Such polis. Then Yours Your cto Cogs on (Unv) x Y. define K on $(U_n V)_{x} y$ by $K(x,y) = \frac{4U(x,y) - 4U(x,y)}{2U(x,y)}$. K is cocally constant as a continuous integral for. H(py)=0, S+) rhb of (p,y) where k is 6.

(fix yey (WLOG, Y + +)

Punional modes to ge a now of IP3xY Where Kiso.

Theorem Let X and Y be top. Sp. with Y compact and connected.

Let $q \in Y$ and suppose the $f_n \times \mapsto f(x, q)$ has a chology says Y^2 . Suppose also that $\forall x \in X$, the f_n $\forall \mapsto f(x, y)$ has a cts log. Then f has a unique continuous logarithm \forall in $x \times y$ such that $\forall x \in X$, $\forall (x, 2) = (y^2(x))$.

If for each $x \in X$, the fn $y \mapsto f(x,y)$ has a unique observation of satisfying $\psi_{*}(y) = \psi^{*}(x)$.

Define Y: XxX - C by Y(x,y)=