Compare log (n!) with
$$\frac{L_n + V_n}{2}$$

Where
$$L_n = n \log n - n$$

 $V_n = (n+1) \log n - n$

$$\frac{L_n + V_n}{2} = (n + \frac{1}{2}) \log_n - n$$

let
$$d_n = \log(n!) - \frac{L_n + v_n}{2}$$

then
$$d_n = \log(n!) - (n+\frac{1}{2}) \log n + n$$

hence
$$d_n - d_{n+1} = (\log (n!) - (n + \frac{1}{2}) \log n + n$$

$$- \log ((n+1)!) + (n + \frac{3}{2}) \log (n+1) - (n+1)$$

$$= - \log (n+1) + (n+\frac{1}{2}) (\log (n+1) - \log n) + \log (n+1) - 1$$

$$= (n+\frac{1}{2}) \log (\frac{n+1}{n}) - 1$$

$$N_{\partial w} \frac{n+1}{n} = \frac{2n+2}{2n} = \frac{(2n+1)+1}{(2n+1)-1} = \frac{1}{1-\frac{1}{2n+1}}$$

For
$$-1 < x < 1$$
, $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$

So (integrating), $-\log(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$

Do $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$

So $\log(\frac{1+x}{1-x}) = 2(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots)$.

Hence $d_n - d_{n+1} = (n+\frac{1}{2})\log(\frac{n+1}{n}) - 1$
 $= \frac{1}{2}(2n+1)\log(\frac{1+\frac{1}{2n+1}}{1+\frac{1}{2n+1}}) - 1$
 $= \frac{1}{3}(\frac{1}{2n+1})^2 + \frac{1}{5}(\frac{1}{2n+1})^4 + \frac{1}{7}(\frac{1}{2n+1})^6 + \cdots$

Thus
$$d_{n} - d_{n+1} > 0$$
, so (d_{n}) is strictly decreasing.

$$(d_{n}) = d_{n+1} < \frac{1}{3} \left(\frac{1}{2n+1}\right)^{2} + \frac{1}{3} \left(\frac{1}{2n+1}\right)^{4} + \frac{1}{3} \left(\frac{1}{2n+1}\right)^{6} + \cdots$$

$$= \frac{1}{3} \left(\frac{1}{2n+1}\right)^{2} \left[\frac{1}{1 - \left(\frac{1}{2n+1}\right)^{2}}\right]$$

$$= \frac{1}{3} \frac{1}{(2n+1)^{2} - 1}$$

$$= \frac{1}{3} \frac{1}{4n^{2} + 4n}$$

$$= \frac{1}{12} \left(\frac{1}{n^{2} + n}\right)$$

$$= \frac{1}{12} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

$$= \frac{1}{12n} - \frac{1}{12(n+1)}$$

$$S_0 = J_n - \frac{1}{12n} > J_{n+1} - \frac{1}{12(n+1)}$$

So the sequence $\left(d_n - \frac{1}{12n}\right)$ is strictly increasing.

Ao
$$d_1 - \frac{1}{12} < d_n - \frac{1}{12n} < d_n < d_1$$

Hence there exists CEIR such that

$$d_n \downarrow C$$
 and $d_n - \frac{1}{12n} \uparrow C$

as $n \longrightarrow \infty$.

Recalling the defin of dn, we see that $\log (n!) - (n+\frac{1}{2})\log n + n \iff C,$

so
$$\log (n!) - \left[\left(+ \left(n + \frac{1}{2} \right) \log n - n \right] \right] \downarrow 0$$
.

Taking exponentials, this means

h!

$$\frac{1}{e^{C} n^{n+\frac{1}{2}} e^{-n}} \downarrow \downarrow 1$$

In particular,
$$n! \sim e^{C} n^{n+\frac{1}{2}} e^{-n}$$
.

$$A \mid SO$$
, $e^{C} n^{n+\frac{1}{2}} e^{-n} < n!$

Now
$$d_n - \frac{1}{12n} \uparrow C$$
, so $d_n - \frac{1}{12n} < c$.

So
$$\log (n!) < C + (n+\frac{1}{2}) \log n - n + \frac{1}{12n}$$

So
$$n! < e^{c} n^{n+\frac{1}{2}} e^{-n} e^{\frac{1}{12n}}$$

Now let's prove a sharper lower bound for n!.

We bound the Series for $d_n - d_{n+1}$ below by its first term, $d_n - d_{n+1} > \frac{1}{3} \left(\frac{1}{2n+1}\right)^2$

$$= \frac{1}{3} \left(\frac{1}{4m^2 + 4n + 1} \right)$$

$$= \frac{1}{12 n^2 + 12 n + 3}$$

$$>\frac{1}{|2n+1|}-\frac{1}{|2(n+1)|+1}$$

because
$$\frac{1}{12n+1} - \frac{1}{12(n+1)+1} = \frac{12n+13 - 12n+1}{(12n+13)(12n+13)}$$

- (

$$= \frac{1}{(n+\frac{1}{2})(12n+13)}$$

$$= \frac{1}{12n^2 + |4n + \frac{13}{12}|}$$

$$= \frac{1}{12n^2 + |2n + 3| + (2n + \frac{13}{12} - 3)}$$

$$< \frac{1}{12n^2 + |2n + 3|} \quad \forall n \ge 1.$$
Thus $d_n - \frac{1}{12n+1} \Rightarrow d_{n+1} - \frac{1}{12(n+1)+1}.$
Thus $d_n - \frac{1}{12n+1} \quad \forall C.$
In particular, $d_n - \frac{1}{12n+1} > C$, so
$$\log(n!) > C + (n+\frac{1}{2}) \log_n - n + \frac{1}{12n+1}$$
, so

$$\gamma! > e^{C} n^{n+\frac{1}{2}} e^{-n} e^{\frac{1}{12n+1}}$$

Remarks

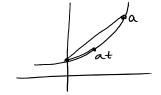
(a)
$$n!$$
 exceeds $e^{c} n^{n+\frac{1}{2}} e^{-n}$ by less than $\frac{9}{n}$ %.

(b) $e^{c} n^{n+\frac{1}{2}} e^{-n} e^{\frac{1}{12n}}$ exceeds $n!$ by less than $\frac{0.7}{n^2}$ %.

From $e^{a} = 1$, $x \mapsto e^{x}$ is convex. So if $a > 0$ and $a > 0$ and $a > 0$ and $a > 0$ and $a > 0$.

Page 5

then
$$\frac{e^{at}-1}{at} \leq \frac{e^a-1}{a}$$
.



So
$$e^{at} \leq |+(e^a-1)t$$
, and

hence, for
$$n \ge 1$$
, $e^{\frac{1}{12n}} \le 1 + \frac{e^{\frac{1}{2}} - 1}{n} < 1 + \frac{0.69}{n}$.
 $e^{\frac{1}{12n} - \frac{1}{12(n+1)}} < e^{\frac{1}{144n^2}} \le 1 + \frac{e^{\frac{1}{144}} - 1}{n^2} < 1 + \frac{0.007}{n^2}$.

Let 0 , and let <math>q = 1 - p. Let $X_1, X_2, X_3, ...$ be independent Bernoulli (p). So $P(X_j = 1) = p$ and $P(X_j = 0) = q$. Then $E(X_j) = p$, and $Var(X_j) = pq$.

Let $S_n = X_1 + \cdots + X_n$. Then $E(S_n) = np$ and $Var(S_n) = npq$.

Let $S_n^* = \frac{S_n - np}{\sqrt{npq}}$. The DeMoivre-Japlace means states that for $-\infty < \alpha < b < \infty$, $\lim_{n \to \infty} P(\alpha < S_n^* < b) = \int_{\sqrt{2\pi}}^{1} e^{-x^2/2} dx$.

This is the earliest form of the Central Limit Theorem.