3/29 Friday, March 29, 2019 14:29

Lemma Let
$$(A_n)$$
 be a seq. of events.
Suppose $\forall w$, $\exists n \ s.t. \forall n' \ge n$, we have $w \in A_n$.
Then $P(A_n^c) \longrightarrow O$.

$$\begin{array}{l} \label{eq:product} P \end{tabular} \begin{subarray}{cccc} P \end{tabular} & \end{tabula$$

Corollary: Let
$$(X, \alpha)$$
 be a mble space.
Let X, X, X_2, \dots be RVs in X .
Appose $\forall \omega$, there exists a such that
for each n'=n, we have $X_{n'}(\omega) = X(\omega)$.
then $P(X_n \neq X) \longrightarrow O$.

FF Apply Lemma $\omega = \{X_n = X\}$.

Page 1

^

Defu Let (X a) be a mble space. To say (X, a) is <u>countably</u> separated means that there is a sequence (An) in Cl Such that for all ω , $\omega' \in \mathbb{X}$, if $\omega \neq \omega'$ then for some n, $1_{A_n}(\omega) \neq 1_{A_n}(\omega)$. \mathcal{G} Let $\mathcal{B} = Borel(\mathbb{R})$. Then $(\mathbb{R}, \mathcal{B})$ is ctby separated. If Let (rn) be an enmention of Q, and let An= (-00, rn). eq (Rd, Borel (Rd)) is also ably separated g Let X & a separable metric space. Then (I, Borel (I)) is ctby separated ey perhaps (P(R), P(P(R))) is not othey separated Theorem Let (Y,B) be a mble space. Then TFAE. (a) (Y,B) is ct by separated (b) For each mble space (X, a) and for all mole fus $f,g: X \rightarrow Y, \{f \neq J\} \in Q$. (c) For each mble space (X, a), for each where $f: X \longrightarrow Y$, $f \in \mathcal{A} \otimes \mathcal{B}$. (d) $id_{\gamma} \in \mathbb{B} \otimes \mathbb{B}$ (e) There is a mble space (X, a) and a

mble map f:X=x / s.t. fea&B.

(e) There is a mble space (X, α) and a map $f: X \xrightarrow{} Y$ s.t. $f \in \Omega \otimes B$.

Remark: To show
$$(e') \Longrightarrow (a)$$
, use the fact that
for each $C \in \sigma(\mathcal{H})$, there exists \mathcal{H}_{o} otble $\subseteq \mathcal{H}$
such that $C \in \sigma(\mathcal{H}_{o})$.

Theorem Let
$$(X, \alpha)$$
 be a mble space. Then TFAE:
(a) (X, α) is they sep'd
(b) There is a one-to-one nuble for $f: X \longrightarrow \mathbb{R}$.
 $ef(b) \Rightarrow (\alpha)$ obvious (take previnges of $(-\infty, r_n)$)
(a) \Rightarrow (b) Let (A_n) be as in defin of they sep is.
Notice that $\sigma = (A_1, A_2, A_3, ...) \mapsto \sum_{n=1}^{\infty} \frac{2A_n}{3^n}$
is a one-to-one may from $\Sigma = \{0, 1\}^N$ into \mathbb{R} .
let $f = \sum_{n=1}^{\infty} \frac{21a_n}{3^n}$. Then f is ruble and one-to-one.
 $(f = h, g)$ where $g: X \longrightarrow \Sigma$ by $g(X) = (I_{A_n}(X))_{n \in \mathbb{N}}$.

Notation Let E and F be sets. Then
$$E \Delta F = (E \cup F) \setminus (E \cap F)$$

= $(E \setminus F) \cup (F \setminus E)$
= $\{1_E \neq 1_F\}$.

.

Thus $|P(E) - P(F)| \leq P(E \Delta F)$.

$$F = EF \cup (E \setminus F)$$

$$F = EF \cup (E \setminus F)$$

$$F = EF \cup (F \setminus E)$$

$$S_{0} |P(E) - P(F)| = |P(EF) + P(E \setminus F) - P(EF) - P(E \setminus F)|$$

$$= |P(E \setminus F)| + |P(F \setminus E)|$$

$$= P(E \setminus F) + P(F \setminus E)$$

$$= P(E \setminus F)$$

Lemme Let
$$(X, \alpha)$$
 be a ctby sepid mble space.
Let X, X_1, X_2, \dots be RVs in X . Suppose
 $P(X_n \neq X) \longrightarrow 0$. Then for each $A \in A$,
 $P(X_n \in A) \longrightarrow P(X \in A)$.

eg in the proof of Thim I on the Poisson process,
we saw that
$$\forall \omega$$
, $\exists n \ s.t. \ \forall r' \ge n$, we have $X_{n'}(\omega) = N_{t}(\omega)$.

Hence
$$P(X_n \neq N_t) \longrightarrow 0$$
. Hence $\forall A = \{0, 1, 2, ...\}$, we
have $P(X_n \in A) \longrightarrow P(N_t \in A)$. Take $A = \{k\}$.
Thus we get $P(X_n = k) \longrightarrow P(N_t = k)$.
Now law (X_n) is binomial with parameters n and pn ,
where $np_n \longrightarrow \lambda_t \in [0, \infty)$.
Hence $P(X_n = k) \longrightarrow \frac{\lambda_t^{\kappa}}{\kappa!} e^{-\lambda_t}$.
Limits are unitive, so $P(N_t = k) = \frac{\lambda_t^{\kappa}}{\kappa!} e^{-\lambda_t}$.

Theorem 2 (uniqueness). Let
$$(M_t)$$
 and (N_t) be Poisson
Processes $[(A') and (B')]$ with rates λ_1 and λ_2
respectively. Assume $\lambda_1 \neq 0$. Let $L_t = \frac{M_{\lambda_t t}}{\lambda_1}$ for $0 \le t = \infty$.
Then (L_t) and (N_t) have identical finite-dimensional
joint distributions.

Page 5

Let
$$L_{0}$$
, $L_{2} - L_{1}$, ..., $L_{tn} - L_{tn}$
have the same joint distribution.
Now $N_{t_{1}} = N_{t_{1}} - N_{0}$,
 $N_{t_{2}} = (N_{t_{2}} - N_{t_{1}}) + (N_{t_{1}} - N_{t_{0}})$,
 $et cetera$
and Similarly for L.
So the random vectors
 $N_{t_{1}}$, $N_{t_{2}}$, ..., N_{tn}
 $M_{t_{1}}$, $N_{t_{2}}$, ..., N_{tn}

σ

Fact
$$low(X) = low(Y) \Longrightarrow low(f(X)) = low(f(Y)).$$

If one line.