Theorem | Let (N_t) be a Poisson process. Then there is a number $\lambda \in (0, \infty)$ such

that for $0 \le s < t < \infty$, $N_t - N_s$ is Poisson

distributed with parameter 2.(t-s).

Pf Instead of (A) and (B), we'll use the following weaker assumptions:

- (A') for all n, for all $t_0, t_1, ..., t_n$, if $0 < t_0 < t_1 < ... < t_n < \infty$, then the events $\{N_{t_1} N_{t_0} \ge 1\}$, $\{N_{t_1} N_{t_2} \ge 1\}$, ..., $\{N_{t_n} N_{t_{n-1}} \ge 1\}$ are independent.
- (B') for all $s, t, u, v \in [0, \infty)$, if t-s = v-u, then $P(N_t - N_s \ge 1) = P(N_v - N_u \ge 1)$.

First, let $t \in (0, \infty)$ and let's show that for some $\lambda_t \in (0, \infty)$, N_t is Poisson distributed w/ parameter λ_t .

For each integer $n \ge 1$, for each $i \in \{1, ..., n\}$, let $\Delta_{ni} = N_{\frac{i}{n}t} - N_{\frac{i-1}{n}t}$. $A_{ni} = \{\Delta_{ni} \ge 1\} = \text{ event that } (N_u) \text{ jumps at least once } (n \text{ the interval } (\frac{i-1}{n}t, \frac{i}{n}t).$

Let $X_n = \sum_{i=1}^n 1_{A_{ni}}$. Clearly $X_n \leq N_t$.

t since (Nu) is a simple counting process.

Let $\omega \in \Omega$. By assumption, there is a set $J(\omega) \subseteq (0, \infty)$

Such that for each $u \in [0, \infty)$, $N_u(\omega) = |J(\omega) \cap (0, \infty)| < \infty$.

In particular, $J(\omega)_n(0,t]$ is a finite set.

Choose an integer $n_0 \ge 1$ such that $\frac{t}{n_0} < \min \{|u-v| : u, v \in J(\omega) \cap (0,t], u \ne v\}$. (if $|J(\omega) \cap (0,t]| < 2$, we can just let $n_0 = 1$)

Then for each $n \ge n_0$, $X_n(\omega) = N_t(\omega)$. (Note: n_0 depends on ω).

Thus $P(X_n \neq N_t) \longrightarrow 0$ as $n \longrightarrow \infty$.

Remark: By a similar argument, for any simple counting process, $(A') \Longrightarrow (A)$.

To see this, approximate each increment by RVs defined analogously to the X_n 's

Now by (B'), for each n there exists $P_n \in [0,1]$ such that for each $i \in \{1,...,n\}$, $P(A_{ni}) = P_n$. By (A'), for each n,

the events An, ..., Am are independent. Thus

X, has a Binomial distribution with parameter pr:

 $P(X_n = k) = \binom{n}{k} p_n^k (1 - p_n)^{n-k} \qquad \text{for each } k \in \{0, ..., n\}.$

Let $\lambda_t = -\log(P(N_t = 0))$. Then $\lambda_t \in [0, \infty]$.

Claim: $\lambda_t < \infty$ and $n p_n \longrightarrow \lambda_t$ as $n \longrightarrow \infty$.

$$P(N_t = 0) = P(\bigcap_{i=1}^n A_{ni}^c) = (1 - p_n)^n.$$

Hence $P(N_t=0) \neq 0$, for otherwise, for each $n_i P_n = 1$,

So
$$P(A_{ni}) = 1$$
, so $P(X_n = n) = 1$, $P(N_t > n) = 1$.

Hence $P(N_t = \infty) = 1$, which is impossible

because $\{N_t < \infty\} = \Omega$.

Since $P(N_t=0)>0$, $\lambda_t<\infty$.

Next,
$$-n \log (1-p_n) = -\log \left[(1-p_n)^n \right] = -\log \left(P(N_t = 0) \right) = \lambda_t < \infty$$
.

Hence $\log(I-P_n) \longrightarrow 0$ so $P_n \longrightarrow 0$ as $n \longrightarrow \infty$.

But
$$\lambda_t = -n \log (1-\rho_n) = -n \left(-\rho_n - \frac{\rho_n^2}{2} - \frac{\rho_n^3}{3} - \cdots\right)$$

$$= np_n \left(\left(1 + \frac{p_n}{2} + \frac{p_n^2}{3} + \cdots \right) \right)$$

So
$$np_n \longrightarrow \lambda_t$$
 as $n \longrightarrow \infty$

This proves the claim

$$P(N_t = K) = P(N_t = k, X_t = N_t) + P(N_t = k, X_t \neq N_t)$$

$$P(N_t=k) > P(N_t=k, X_t=N_t) \dots$$
 (simple way next time)

Fancy way:
$$P(X_n \neq N_t) \longrightarrow 0$$
, so $X_n \xrightarrow{P} N_t$,

So
$$law(X_n) \xrightarrow{w} law(N_t)$$
.

But since $n\rho_n \longrightarrow \lambda_t$, $law(X_n) \xrightarrow{w} \pi(\lambda_t)$.

So $law(N_t) = \pi(\lambda_t)$.

Now
$$\lambda_{s+t} = -\log \left(N_{s+t} = 0\right) = -\log P\left(N_{t+s} - N_{t}\right) + N_{t} = 0\right]$$

$$= -\log P\left(N_{t+s} - N_{t} = 0, N_{t} = 0\right)$$

$$= -\log P\left(N_{t+s} - N_{t} = 0\right) - \log P\left(N_{t} = 0\right)$$

$$= -\log P\left(N_{t+s} - N_{t} = 0\right) - \log P\left(N_{t} = 0\right)$$

$$= -\log P\left(N_{s+s} - N_{t} = 0\right) - \log P\left(N_{t} = 0\right)$$

$$= \lambda_{s} + \lambda_{t}$$

Mas , $t \mapsto \lambda_t = -\log P(N_t = 0)$ is increasing on $(0, \infty)$. So $\forall t \in (0, \infty)$, $\lambda_t = \lambda \cdot t$ where $\lambda = \lambda_1$.

Finally, for all $s \in (0, \infty)$, the process $(N_{u+s} - N_s)_{0 \le u < \infty}$ Satisfies (A') and (B') and we have $\lambda_i = -\log P(N_{i+s} - N_s = 0).$ So $\forall t \ge s$, $\lim (N_{t+s} - N_s) = \pi(\lambda_i t) = \pi(\lambda_t t).$

(Remark: In particular, for any simple counting process