$(\times, \mathcal{A}, \mathcal{M})$

$$\underbrace{ \mathcal{E}_{xamples}}_{\mathcal{X}} \quad f: X \longrightarrow [o, \infty] \text{ be } \sigma \text{-simple} \cdot This means f[X] is contable } \\ \underbrace{ \mathcal{E}_{\mathcal{X}}}_{\mathcal{Y}}, \quad f^{-}[\{y\}] \text{ is mble}. \quad Note: a \sigma \text{-simple } f_n \text{ is mble}.$$

Then
$$\int f d\mu = \sum_{y} y \cdot \mu(f=y)$$

 $\not F = if f \text{ is simple, this was on defined the integral.}$
If f is not simple but onsimple that $f(X)$ is countably infinite.
Let y_i, y_2, y_3, \dots be the distinct elements of $f(X)$.
Let $\psi_i = y_i \cdot 1_{\{f=y_i\}}$ and $\psi_n = \sum_{i=1}^{n} \psi_i$. Then
 $\psi_n \uparrow f$ So $\int f d\mu = \lim_{n \to \infty} \sum_{i=1}^{n} y_i \cdot \mu(f=y_i) = \sum_{y} y \cdot \mu(f=y)$.

Integration of
$$\overline{\mathbb{R}}$$
 - valued fins
Let $f: X \longrightarrow \overline{\mathbb{R}}$.

Det me
$$f^{\dagger}(x) = \max \{f(x), o\}, f(x) = \max \{f(x), o\} \quad \forall x \in X.$$

 $f^{\dagger} - f^{-} = f, \quad f^{\dagger} + f^{-} = \|f\|.$
Remark: Let $f: X \longrightarrow \overline{R}$. f is mble iff $f^{\dagger} \in f$ one mble.
 $\underline{Pf} : (\Rightarrow)$ recall that $\max \{f_n: n > 1\}$ is mble if even f_n is.
(\Leftrightarrow) Suppose $f^{\dagger} \notin f^{-}$ one mble.
Let $o \in \varphi_n \uparrow f^{\dagger}$ and $o \in \varphi_n \uparrow f^{-}$ for $\varphi_n \colon \varphi_n \in SF^{\dagger}$.
Thun $\underbrace{\varphi_n - \psi_n}_{R-v-luv} = f$ so f is a limit of mble fue.

Defn: Let
$$f: X \longrightarrow \overline{R}$$
.
(a) to say if du is defined means f is mble and
 $\int f^{+}d_{n}$ and $\int \overline{f} d_{n}$ are not both ∞ .
(b) if $\int f d_{n}$ is defined than $\int f d_{n} = \int f^{+}d_{n} - \int \overline{f} d_{n}$.
(c) if $\int f d_{n}$ is defined than $\int f d_{n}$ is defined a finite.
(c) to say f is μ - $\int ble$ mans $\int f d_{n}$ is defined a finite.
Warning: $\int_{0}^{\infty} (\frac{\sin x}{x})^{+} dx = \infty$, and so is $\int_{0}^{\infty} (\frac{\sin x}{x})^{-} dx$.
So $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is not defined.
What is defined is $\int_{0}^{\infty} \frac{\sinh x}{x} dx = \lim_{b \to \infty} \int_{0}^{b} \frac{\sin x}{x} dx = \frac{\pi}{2}$

Remark Let
$$f: X \longrightarrow \overline{R}$$
. Suppose $\int f d_{\mu}$ is defined.
Then $|\int f d_{\mu}| = \int f d_{\mu} = \int f d_{\mu}| = |\int f d_{\mu}| = \int f d_{\mu} = \int f d_{$

and
$$\int f d_{\mu} \longrightarrow \int g d_{\mu} \longrightarrow$$

If
$$h^{+}(x) = \max \{h(x), o\} = \max \{h_1(x) - h_2(x), o\} \leq \max \{h_1(x), o\} = h_1(x),$$

Similarly $h(x) \leq h_2(x)$. Thus $\int h^{-}d_{\mu} \leq \int h^{2}d_{\mu} < \infty$.
Now $h_1 - h_2 = h = h^{+} - h^{-}$ so $h_1 + h^{-} = h^{+} + h_2$ so
 $\int h_1 d_{\mu} + \int h^{-}d_{\mu} = \int h^{+}d_{\mu} + \int h_2 d_{\mu}$ so $\int h_1 d_{\mu} - \int h_2 d_{\mu} = \int h^{+}d_{\mu} - \int h^{-}d_{\mu} = \int h^{+}d_{\mu}$.

Integration of R^d-Valued fusi

Let
$$f: X \longrightarrow \mathbb{R}^{d}$$
. Then $f(x) = (f_{1}(x), ..., f_{d}(x))$ where each $f_{1}: X \rightarrow \mathbb{R}$.
Let f is moble iff $f_{1}, ..., f_{d}$ are all moble.
 $\mathbb{P}f \iff \mathbb{S}$ Suppose f is mble.
 $\{f_{k} > y\} = f^{-1}[\mathbb{R} \times ... \times \mathbb{R} \times (y, \infty) \times \mathbb{R} \times ... \times \mathbb{R}] \in \mathbb{Q}$.
 (\in) suppose $f_{1}, ..., f_{d}$ are moble.
 $f^{-1}[(\alpha_{1}, b_{1}) \times ... \times (\alpha_{d}, b_{d})] = \int_{\mathbb{R}^{d}}^{d} f_{k}^{-1}[(\alpha_{k}, b_{k})] \in \mathbb{Q}$.
Let G be an open $\subseteq \mathbb{R}^{d}$. Let $\mathcal{U} = \{(\alpha_{1}b) \subseteq G: a^{-1}(\alpha_{1}..., \alpha_{d}) \in \mathbb{Q}^{d}, b \in \mathbb{Q}^{d} + b \in \mathbb{Q}^{d} + b \in \mathbb{Q}^{d} + b \in \mathbb{Q}^{d} + b \in \mathbb{Q}^{d}$.
Then $v \mathcal{U} = G$. Hence $f^{-1}[G] = v\{f^{-1}[I]: I \in \mathcal{U}\} \in \mathbb{Q}$.