Jume Let PESF+. Define Von a by V(A) = Jy du. then Visa menouse on a.

If Let the distinct elements of P(X) be yi, you het Bx = { \phi = yx 3. Then UBx = X, and \phi = \geq yx 1 Bx

 $V(A) = \int_A V d\mu = \sum y_k \int_{A_n R_k} d\mu = \sum y_k M(A_n B_k)$.

for each K, the for A - M (AnB) is a measure on A. $\left(\left(\tilde{\mathbb{Q}}A_{j}\right)\cap\mathcal{B}_{k}=\tilde{\mathbb{Q}}\left(A_{j}\cap\mathcal{B}_{k}\right)\right)$

So A - y M (AnBx) is too, SO A -> = yx M(AnBx) is too

The Monotone Convergence Theorem

Let $f_1 \leq f_2 \leq f_3 \leq \cdots$ be $[0, \infty]$ -valued mble fine on X.

Let f= limfn. Then ffdu= lim ffrdu.

THIS Pf: If $d_{\mu} \leq \int f_2 d_{\mu} \leq \int f_3 d_{\mu} \leq \dots$ Let $L = \lim_{n \to \infty} \int f_n d_{\mu}$.

early &f so L & Jfdn. Let's show Ifdn &L.

Let t < ffa. we'll show that t < ffrage for some n.

by defn, Ifdn = sup { Jydn: PESF+, PEF } Homee for some YESF W YEF, we have t < JYdn. Let $\alpha \in (0,1)$ s.t. $t < \alpha \int \theta d\mu$. Let $\Psi = \alpha \cdot \Psi$ Then $\Psi \in SF^{+}$ and $t < \int \Psi du$. And $\forall x \in X$, if $0 < f(x) < \infty$ then $\Psi(x) < f(x)$. While if $f(x) = \infty$ then $\Psi(x) < f(x)$ too. S $\Psi \subset f$ on $\{f > 0\}$. Let $A_n = \{f_n > \Psi\}$. Then $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ Clark: OA, = X. If f(x) > 0 then $\Psi(x) < f(x)$. Since $f_n(x) \uparrow f(x)$, $\exists n$ s.t. $\Psi(x) < f_n(x)$. So $x \in A_n$.

If f(x) = 0 then $f_n(x) = 0$ and $\Psi(x) = 0$ so $x \in A_n \notin A_n$.

Define V on Q by $V(A) = \int_A \Psi d\mu$. Then V is a measure on Q. $\int f_n d\mu > \int f_n f_n d\mu > \int f_n \Psi d\mu = \int_A \Psi d\mu = V(A_n).$ As $N \to \infty$, $V(A_n) \to V(X) = \int \Psi d\mu > t$,

So $L = \lim_{n \to \infty} \int f_n d\mu > t$. t was a bitrary so $L > \int f d\mu$.

Fatours Lemma: Let $f_1, f_2, f_3, \ldots \in A^+$, and let $f = \liminf_{n \to \infty} f_n$.

Then $\iint du \leq \liminf_{n \to \infty} \iint_{n} du$.

proof: Let $g_n = \inf_{k \ge n} f_k$. Then $g_1 \le g_2 \le g_3 \le \dots$ and $\lim_{n \to \infty} g_n = f$. So $\lim_{n \to \infty} \int g_n \, d\mu = \int f \, d\mu$ by MCT above. $\forall n$, $g_n \le f_n$ so $\int g_n \, d\mu \le \int f_n \, d\mu$, so $\lim_{n \to \infty} \int g_n \, d\mu = \lim_{n \to \infty} \int g_n \, d\mu \le \lim_{n \to \infty} \int f_n \, d\mu$

Corollary 1: Let $f, f_1, f_2, f_3, \dots \in A^+$, suppose $f_n \longrightarrow f$ positivise and $0 \le f_n \le f$. Then $\int f_n d\mu \longrightarrow \int f_n d\mu$.

Corollary 2: Suppose $f, f_1, f_2, f_3, \ldots \in \mathcal{U}^+$. Suppose $f_n \to f$ pointwise & $\int f_n dn \to L < \infty$. then $\int f dn < \infty$.

If If du & limint If ndu < 00

Corollary 4 Let $f, f, f_2, f_3, \dots : X \longrightarrow \mathbb{C}$ be mble with $f_n \longrightarrow f$ pointwise. Let $g \in \mathcal{A}^+$. Suppose $|f_n| < g \ \forall n \ and \ \int g dn < \infty$.

Page :

Proof: Note that $|f| = \lim_{n \to \infty} |f| \le g$. Let $h_n = 2g - |f - f_n|$. $h_n \in \mathcal{A}^+ \quad \forall n \quad (|f - f_n| \le |f| + |f_n| \le g + g = 2g$, so $h_n \ge 0$). $h_n \longrightarrow 2g$ and $h_n \le 2g$ so $\int h_n d_n \longrightarrow \int 2g dn$ Now $h_n + |f - f_n| = 2g$ so $\int h_n d_n + \int |f - f_n| d_n = \int 2g dn$ So $\int |f - f_n| d_n = \int 2g dn - \int h_n dn \longrightarrow \int 2g dn - \int 2g dn = 0$.

Cordlary 3: Let $f, g \in A^{+}$. Then $\int f + g dn = \int f dn + \int g dn$.

Proof: Dince $f, g \in A^+$, \exists increasing sequences $(4)_n$ and (4_n) in SF^+ s.t. $\forall n \uparrow f$ and $\forall n \uparrow g$. Then $\forall n \uparrow f + g$.

So $ff+gdu = \lim_{n \to \infty} \int \psi_n + \psi_n dn$ (Mct) $= \lim_{n \to \infty} \left(\int \psi_n dn + \int \psi_n dn \right)$