2/27

Wednesday, February 27, 2019 14:21

Hence
$$X_1 + X_3$$
 and $X_2 - X_4 e^{X_5}$ are independent as well.
 $X_1 + X_3$ is $\sigma(Y_1) - mble$.
 $X_2 - X_4 e^{X_5}$ is $\sigma(Y_2) - mble$.

Then
$$E(XY) = E(X) \cdot E(Y)$$
.

$$Ff \quad ① \text{ Suppose } X = 1_A \quad \text{and } Y = 1_B, \text{ where } A, B \in \mathcal{F}. \text{ Then } XY = 1_{AB} \text{ and}$$
$$A \& B \text{ are independent}, \quad \text{So } E(XY) = P(AB) = P(A)P(B) = E(X)E(X).$$

Suppose X and Y are Simple. Let
$$a_{1,\dots,n}a_{m}$$
 be the distinct values of Y.
Let $A_{j} = \{X = a_{j}\} = X^{T}[fa_{j}J]$ and $B_{k} = \{Y = b_{k}\} = Y^{T}[fa_{k}J]$.
Then $X = \sum_{j=1}^{m} a_{j} f_{A_{j}}$ and $Y = \sum_{k=1}^{m} b_{k} f_{B_{k}}$. For each pair $(j_{1}K)$,
the events A_{j} and B_{k} are independent because $A_{j} \in O(X)$, $B_{k} \in O(Y)$.
So $E(XY) = E\left[(\sum_{j=1}^{m} a_{j} f_{A_{j}})(\sum_{j=1}^{m} b_{1} f_{B_{k}})\right] = \sum_{j=1}^{m} \sum_{k=1}^{m} a_{j} b_{k} E(f_{A_{j}})(\sum_{j=1}^{m} b_{1} f_{B_{k}})$
 $= E(X)E(Y)$.

Similarly: let
$$X_1, \dots, X_n : \Omega \longrightarrow [0, \infty]$$
 be indp. Then $E(\Pi X_i) = \Pi E(X_i)$

Corolley: Let
$$X, Y : \Omega \longrightarrow \mathbb{R}$$
 be independent $\mathbb{R}V$. with
 $E(|X|), E(|Y|) < \infty$. Then $E(|XY|) < \infty$ and
 $E(XY) = E(X)E(Y)$.

$$F = E[XY] = E[X] E[Y] < \infty \text{ by previous Combined}.$$

$$Now \quad X = X^{+} - X^{-} \quad \text{ond} \quad Y = Y^{+} - Y^{-} \text{ so}$$

$$E(XY) = E(X^{+}Y^{+} - X^{+}Y^{-} - X^{-}Y^{+} + X^{-}Y^{-})$$

$$= E(X^{+}Y^{+}) - E(X^{+}Y^{-}) - E(X^{-}Y^{+}) + E(X^{-}Y^{-})$$

$$= E(X^{+}) E(Y^{-}) - E(X^{+}) E(Y^{-}) - E(X^{-}) E(Y^{+}) + E(X^{-}) E(Y^{-})$$

$$= (E(X^{+}) - E(X^{-})) (E(Y^{+}) - E(Y^{-})) = E(X) E(Y).$$

$$\begin{array}{l} \underbrace{\text{Similarly}}_{i}: \ \text{Let } X_{i}, \dots, X_{n}: \Omega \longrightarrow \mathbb{R} \ \text{be ind} p. \ \text{Then } \mathbb{E}(\Pi X_{i}) = \Pi \mathbb{E}(X_{i}). \\ \text{with } \mathbb{E}[X_{i}] < \infty. \\ \text{Then } \mathbb{E}[\Pi X_{i}] < \infty. \end{array}$$

Motation:
$$L^{\circ} = \text{ the set of all Real RVs on } \Omega$$
.
For $0 , $L^{P} = \{X \in L^{\circ} : E(|X|^{P}) < \infty\}$
 $\int |X|^{P} dP$$

Thus $L' = \{X \in L^\circ : E(|X|) < \infty\}$. $L^2 = \{X \in L^\circ : E(|X|^2) < \infty\}$. Deto: Let $X \in L'$. $X^\circ = X - E(X)$ is "X centered." $E(X^\circ) = 0$. Note: Let $X, Y \in L'$. Then $(X + Y)^\circ = X^\circ + Y^\circ$. Deto Let $X \in L'$. Then the variance of X is $V_{ar}(X) = E[(X^\circ)^2]$. The Standard deviation of X is $\sigma_X = \sqrt{Var(X)} = ||X^\circ||_2$.