2/25 Monday, February 25, 2019 14:14

Products of Mble Spaces
det
$$(X_{i}, Q_{i}), (X_{2}, Q_{2})$$
 be inde space.
Let $X = X_{i} \cdot X_{2}$.
Define $Q_{i} \otimes Q_{2}$ to be the σ -field on X generated
by $Q_{i} \otimes Q_{2} = \{A_{i} \times A_{2} : A_{i} \in Q_{i}, A_{2} \in Q_{2}\}$
 $\pi_{i} : X \longrightarrow X_{i} \quad \pi_{i}(x_{i}, x_{i}) = x_{i}$
 $\pi_{i} : X \longrightarrow X_{2} \quad \pi_{i}(x_{i}, x_{i}) = x_{2}$
for all $A_{i} \subseteq X_{i}, A_{2} \subseteq X_{2}, \quad \pi_{i}^{*}[A_{i}] \cap \pi_{i}^{*}[A_{2}] - A_{i} \times A_{2}$.
Thus $Q_{i} \otimes Q_{2} = \sigma(\pi_{i}^{**}[A] : i \in \{i, 2\}, A \in Q_{i}\})$.
Then $Q_{i} \otimes Q_{2} = Borel(R)$.
Then $Q_{i} \otimes Q_{2} = Borel(R^{2})$.

_

(b) if each open subset of Z is a countable union of open

(estangles, then each open subset of Z belongs to
$$\sigma(R)$$
.
So $C \equiv \sigma(R)$.

(C) Suppose X is second countable. Let
$$\mathcal{U} = \{\mathcal{U}_n : n \in \mathbb{N}\}$$
 be
a countable open base for X. Let W be an open subset of Z.
Let's show that W is a union of countably mony open rectangles.
 $\forall n, Ut \ \mathcal{U}_n = \{V \text{ open } \in \mathcal{Y} : \mathcal{U}_n \times \mathcal{V} \cong \mathcal{W}\}, \text{ Let } \mathcal{V}_n = \mathcal{U}\mathcal{V}_n.$
Then $\mathcal{U}_n \times \mathcal{V}_n \subseteq \mathcal{W}.$ Hence, $\mathcal{U}(\mathcal{U}_n \times \mathcal{V}_n) \subseteq \mathcal{W}.$ In fact, $\mathcal{U}(\mathcal{U}_n \times \mathcal{V}_n) = \mathcal{W}.$
Let $(x_i y) \in \mathcal{W}.$ Then $(x_i y) \in \mathcal{U} \times \mathcal{V} \subseteq \mathcal{W}$ for some open $\mathcal{U} \le \mathcal{X} \notin \mathcal{V} \le \mathcal{Y}.$
Thus $x \in \mathcal{U}_n \subseteq \mathcal{U}_n \subseteq \mathcal{U}$ for some n. Then $\mathcal{V} \in \mathcal{V}_n$ so $(x_i y) \in \mathcal{U}_n \times \mathcal{V}_n.$

Products of lots of mble spaces
Let
$$((X_i, a_i))_{i \in I}$$
 be a family of mble spaces.
Let $X = \prod_{i \in I} X_i = \{(x_i)_{i \in I} : x_i \in X_i \ \forall i \in I\}$.
 $T_i : X \longrightarrow X_i$ is defined by $T_i((x_i)_{i \in I}) = x_i$.
The product or field on X is $A = \bigotimes_{i \in I} A_i = \sigma(T_i[A] : i \in I, A \in X_i)$.
Note that $\bigotimes_{i \in I} A_i = \sigma(\bigotimes_{i \in I} A_i)$, where
 $\bigoplus_{i \in I} A_i = \{\prod_{i \in I} A_i : A_i \in A_i \text{ for all } i \in I \\ A_i = X_i \text{ for all but finitely many } i \in I\}$.
The reason is that $\bigoplus_{i \in I} A_i$ is just the set of

^

finite intersections of elements of {TTi [A]: i ∈ I, A ∈ a }.

Theorem: Let
$$((\Sigma_{i}, \alpha_{i}))_{i \in I}$$
 be a finity of note spaces.
Let $X_{i}: \Omega \to \Sigma$ for each i.e. I. Let $X = \prod_{i \in I} X_{i}$, $\Omega = \bigotimes_{i \in I} \alpha_{i}$.
Define $X: \Omega \to \Sigma$ by $X(\omega) = (X_{i}(\omega))_{i \in I}$.
Then $\sigma(X) = \sigma(\bigcup_{i \in I} \sigma(X_{i}))$ (where $\sigma(X) = \{X'(A] : A \in \Omega\}$).
Small + of idl
m Ω which makes makes each X_{i} mble
 $M \cap W_{i}$ to have makes each X_{i} mble
 $M \cap W_{i}$ to have $M \in \alpha_{i}$,
 $X'_{i}[A] = (\pi \cdot X)^{T}[A] = X^{T}[\pi_{i}^{T}[A]] \in \sigma(X)$
 $=$ guester of Ω .
Hence $\sigma(X_{i}^{T}[A] : i \in I, A \in \alpha_{i}] \in \sigma(X)$.
(a other words, $\mathcal{J} = \sigma(\bigcup_{i \in I} \sigma(X))$.
Mow leds show '2".
Let $\mathcal{B} = \{B \in X : X^{T}(B] \in \mathcal{J}\}$. Let $i \in I$ as $A \in \alpha_{i}$.
(consider $B = \pi_{i}^{T}[A]$.
Then $X^{T}[B] = X^{T}[\pi_{i}^{T}[A]] = (\pi_{i} \cdot X)^{T}[A] \in \mathcal{J}$.
So $\{\pi_{i}^{T}[A] : i \in I, A \in \alpha_{i}\} \in \mathcal{B}, and \mathcal{B}$ is a σ -field

So $\alpha \in \beta$. So $\forall \beta \in \alpha, \chi'[\beta] \in \mathcal{B}, so \sigma(x) \in \mathcal{B}.$