(12, F, P) - Prob Sp.

Deh Let $(H_i)_{i \in I}$ be a family of 11-systems $H_i \subseteq F$. To say that (H_i) is independent news \forall finite $\emptyset \neq I_0 \subseteq I$, \forall $(H_i)_{i \in I_0} \in \prod_{i \in I_0} H_i > P(\bigcap_{i \in I_0} H_i) = \prod_{i \in I_0} P(H_i)$.

Jemme: Let Hi,..., Hn be indp π-systems tet k∈ {1,...,n}.

nen Hi,..., σ(Hr),..., Hn is also indp.

If Let $I_0 \subseteq I$ be finite. Let $(H_i)_{i \in I_0} \in \prod_{i \in I_0} H_i'$ where $H_i' = H_i$ if i = k and $H_k' = \sigma(H_k)$. Suppose $K \in I_0$ & $\{K\} \neq I_0$.

Let $I_i = I_0 \setminus \{k\}$. Let $A = \bigcap_{i \in I} H_i$, so $A \cap H_k = \bigcap_{i \in I} H_i$.

Let $B = \{B \in \mathcal{F} : P(AB) = P(A)P(B)\}$. Then B is a λ -system on Ω .

Since $\mathcal{H}_{1,...}$, \mathcal{H}_{n} at indp, $\mathcal{H}_{k} \subseteq \mathcal{B}$. Hence $\sigma(\mathcal{H}_{k}) \subseteq \mathcal{B}$ by

the π -x hum. In particular, $\mathcal{H}_{k} \in \mathcal{B}$ so $P(\bigcap_{i \in \mathcal{I}_{k}} \mathcal{H}_{i}) = P(A) P(\mathcal{H}_{k})$.

Theren: Let $fl_1,..., fl_n$ be indep T-systems. Then $\sigma(fl_i),..., \sigma(fl_n)$ is are independence.

Theren: let (fli) ies be indp TT-Systems. Then (o(Jli)) ies one indp. T-systems.

Defris

- (a) let (X,α) be a mble space, and let $X:\Omega\to X$ be a random variable (i.e. X is H/α mble). Then $\sigma(X)=\{X^{-1}(A):A\in \alpha\}$.
- (b) Set $((X_i, \alpha_i))_{i \in I}$ be a family of mble spaces, and $\forall i \in I$ let $X_i : \Omega \longrightarrow X_i$ be a random variable.

To say trust the family $(X_i)_{i \in I}$ is independent mens that the family $(\sigma(X_i))_{i \in I}$ of σ -fields is independent.

Fermin: Let $(fli)_{i \in I}$ be a family of Ti-systemo. Let $fl = \{ \bigcap_{i \in I_0} H_i : \emptyset \neq I_0 \text{ finite} \subseteq I \}$. Let $\mathcal{Y} = \bigcup_{i \in I} f_i = \{ H : H \in \mathcal{H}_i \text{ for some } i \in I \}$. Then $fl = \pi(\mathcal{Y})$.

pf $\forall i$, $\mathcal{H}_{i} \subseteq \mathcal{H}$ because $\forall H \in \mathcal{H}_{i}$, $H = \bigcap_{i \in I_{i}} H_{i}$ when $I_{i} = \{i\}$ as $H_{i} = H$.

Hence $\mathcal{H} \subseteq \mathcal{H}$. By construction, each π -system buttaining \mathcal{H} contains \mathcal{H} .

It remains only to show that \mathcal{H}_{i} is a π -system.

Let $A, B \in \mathcal{H}$. Then $A = \bigcap_{i \in J} A_{i}$ as $B = \bigcap_{i \in K} B_{i}$ for some nonempty frinte $J_{j} K \subseteq I$ and some $(A_{i}) \in \Pi \mathcal{H}_{i}$ and $(B_{i}) \in \Pi \mathcal{H}_{i}$.

Then $A \cap B = \bigcap_{i \in J \cup K} A_{i} \cap B_{i}$, let's say $B_{i} = \emptyset \neq i \notin K$ and $A_{i} = \emptyset \neq i \in J$. $B_{i} = \emptyset \neq i \notin K$ and $A_{i} = \emptyset \neq i \notin J$.

The General Grouping Theorn

1.t (4.1.

i) iEI be an independent family of TT-systems.

Let (I;) is be a disjoint family of nonempty subsets of I.

For each jej, let $\mathcal{E}_{j} = \sigma(H : H \in \mathcal{H}_{i} \text{ for some } i \in J)$.

Then the family $(\mathcal{E}_j)_{j \in J}$ is independent.

Then $\forall j \in J$, $\forall i \in I_j$, $\mathcal{H}_i \subseteq \mathcal{D}_j \subseteq \mathcal{E}_j$. Lence, $\forall j \in J$, $\sigma(\mathcal{D}_j) = \mathcal{E}_j$.

But by the lemma, even of; is a TT-system.

hence, by an earlier theren, to prove that the

family (Ej) jej of o-fields is independent, it

Sufficient to show that (D); is independent.

Let $\emptyset \neq J^{\circ}$ finite $\subseteq J$, and let $D_{j} \in \mathcal{D}_{j}$ for each $j \in J$.

We wish to show trust $P(\bigcap_{j \in J^{\circ}} D_j) = \prod_{j \in J^{\circ}} P(D_j)$.

For each $j \in J^{\circ}$, $D_{j} = \bigcap_{i \in I_{i}^{\circ}} H_{i}$ for some finite $I_{i}^{\circ} \in I_{j}^{\circ}$.

And $\forall i \in I_i^c$, $H_i \in \mathcal{H}_i$. (Renumber the sets I_j are disyont

So (Hi) iEUI; is well-defined). Let I = UI; Then \$\forall I^\text{rin.} + e \le I.

 S_{ϵ} $P(\bigcap_{j \in J^{\circ}} D_{j}) = P(\bigcap_{i \in J^{\circ}} H_{i}) = \prod_{i \in J^{\circ}} P(H_{i}) = \prod_{j \in J^{\circ}} P(D_{j})$

Eg Let X1, X2, X3, X4, X5 be 14dp real RVs.

Let $Y_1 = f_1(X_1, X_5)$, $Y_2 = f_2(X_2, X_4)$, $Y_3 = f_3(X_3)$. Where $f_1, f_2 \circ \mathbb{R}^2 \to \mathbb{R}$ are $f_3 : \mathbb{R} \to \mathbb{R}$ are borel fig. Then Y_1, Y_2, Y_3 are independent $\mathbb{R} Y_3$.