The more bone Class Thesem

Let X be a set, let $f \subseteq P(X)$, let M = MC(f). Then: (a) M is closed under countable unions iff $\forall A, B \in \mathcal{H}$, $A \cup B \in M$.

[pf(⇒) is obvious since H≤M.

(€) Appose AUB∈M VA,Beff.

Ill A∈H. Lt B= {B∈M: BvA∈m}.

Then $fl \in B$. Mo, B is a monotone class (let $(B_n) \in B^N$ if (B_n) is increasing and $\bigcup B_n = B$, Then $(A \cup B_n)$ is increasing a $M \ni \bigcup (A \cup B_n) = A \cup (\bigcup B_n)$, So $\bigcup B_n \in B$. If (B_n) is decreasing and $\bigcap B_n = B$, Then $(A \cap B_n)$ is decreasing and $A \cup (\bigcap B_n) = \bigcap (A \cup B_n) \in M$ So $\bigcap B_n \in B$. This shows B is a monotone class.).

Since B is a monotone class and $\mathcal{H} \subseteq \mathcal{B}$, we have $\mathcal{M} \subseteq \mathcal{B}$. So $\mathcal{B} = \mathcal{M}$ Puis holds $\forall A \in \mathcal{H}$. Let $\mathcal{B} \in \mathcal{M}$. Let $\mathcal{A} = \{A \in \mathcal{M} : A \cup B \in \mathcal{M}\}$.

Then HEA and a is a monotone class (by the same argument).

Hence M S a. This Y A, BEM we have AUBEM.

Now consider any $(A_n) \in \mathbb{M}^N$. Then $(B_n = \bigcup_{k \leq n} A_k)$ is

on mereading sequence so ()R-11A ~ M

(b) M is closed under othle intersections iff

∀ A, B∈ H we have A ∩ B∈ M.

(Af similar to (a).)

- (c) M is closed under complementation rel: to X iff \forall $H \in \mathcal{H}$, $X \setminus H \in M$. [pf (=) obvious since $\mathcal{H} \subseteq \mathcal{H}$
 - (€) Sprose XHEM HEH.

 Let a={A∈M: X-A∈M}. Then H∈A, and

 a is a monotone class. So M=a.]
- (d) If H is a field on X, M is a orfield on X, M = o(H). [Pf o(H) ≥ M since o(H) is a monetone class. But by the above parts, if H is a field, M is a orfield Containing H so o(H) ∈ M.)

The π - λ theorem: Let X be a set, let fl be a π -system on X. Let B be a λ -system on X containing fl. Then $\sigma(fl) \subseteq B$. If Since fl is a π -system on B is a λ_0 -system, field(fl) $\subseteq B$. Since B is a λ -system, B is a runnetone class, so $B \supseteq MC(field(fl)) = \sigma(field(fl)) = \sigma(fl)$.

Exam Mondone Convergence or a part of Mondone Class Theorem.

Theorem Let $\mu \to \nu$ be Borel probability measures on R. Let $F \in G$ be their Cumulative Distribution Functions: $(g F(x) = \mu((-\infty, x))$ and $G(x) = \nu((-\infty, x))$. Suppose F = G. Then $\mu = \nu$.

It $H = \{(-\infty, x] : x \in R\}$. Then H is a π -system. Let $B = \{B \in B \text{ orel } (R) : \mu(B) = \nu(B)\}$. Since $\mu = \nu(R)$ ore measures on B orel (R) ψ $\mu(R) = 1 = \nu(R)$, B is a λ -system. $\forall x \in R$, $\mu((-\infty, x]) = F(x) = G(x) = \nu((-\infty, x])$, so $(-\infty, x] \in B$. Thus $H \subseteq B$. Therefore $B \supseteq \sigma(H) = B \text{ orel } (R)$ so $\mu = \nu$.

Theorem: Let (X, α) be a mbb space, Let H be a π -system on X s.t. $\sigma(H) = \alpha$. Let μ and ν be finite measures on $(X, \alpha) = \nu(X) = \nu(X)$. Suppose $\mu(H) = \nu(H) \vee H \in H$. Then $\mu = \nu$.

Theorem: Let (X, α) be a mble space and let H be a π -system on X s.t. $\sigma(H) = \alpha$. Let $\mu \longrightarrow \nu$ be measures in α s.t. $\mu(H) = \nu(H)$ \forall $H \in H$. Suppose \exists $(H_n) \in H^N$ s.t. $\nu(H_n) = X$ and $\mu(H_n) = \nu(H_n) < \infty$.

If $\forall n \in \mathbb{N}$, define $\mu_n \longrightarrow \nu_n$ on Ω by $\mu_n(A) = \mu(A \cap H_n)$, $\nu_n(A) = \nu(A \cap H_n)$. Then $\mu_n(X) = \mu(H_n) = \nu(H_n) = \nu_n(X) < \infty$, so $\mu_n \longrightarrow \nu_n$ are finite measures on Ω with the same total mass. For each $H \in \mathcal{H}$, we have $H \cap H_n \in \mathcal{H}$ so $\mu_n(H) = \mu(H_n H_n) = \mu(H_n H_n)$

Thus by the above result, Vn = un. This holds Vn.

fet $A \in A$. Then $A = \bigcup_{n} A_n H_n$. Let $A_n = A_n H_n$. Let $B_n = A_n \setminus \bigcup_{m \in n} A_m$.

Then $A = \bigcup_{n} B_n$. Also, $\forall n$, $\mu(B_n) = \mu(B_n \cap H_n) = \mu(B_n)$, some for ν so: $\mu(A) = \sum_{n} \mu(B_n) = \sum_{n} \mu(B_n) = \sum_{n} \nu(B_n) = \sum_{n} \nu(B_n)$

Theorem: Let μ and ν be measures on Borel(R) S.t. $\mu((a_1b_1) = \nu((a_1b_1) < \infty)$ for $-\infty < \alpha < b < \infty$. Then $\mu = \nu$.

Take $H = \{(a_1b_1): -\infty < a \le b < \infty\}$, take $H_n = (-n, n]$.