Reminder Let
$$A_{1,...,}A_{n} = \Omega$$
.
Let $B = \{B \in \Omega : B \text{ is expressible in terms of } A_{1,...,}A_{n} \}$
Define $X : \Omega \longrightarrow \{o, i\}^{n}$ by $X(\omega) = (1_{A_{1}}(\omega), ..., 1_{A_{n}}(\omega))$.
Let $X = X[\Omega]$. Then:
 $\omega \in C \longrightarrow X^{-1}[C]$ is a bijection from $P(X)$ onto B .
 $|B| = 2^{m}$ where $m = |X| \leq 2^{n}$.

$$F_{j=1} \mathcal{K}_{j} \mathcal{$$

Note that
$$\bigcap_{j=1}^{n} B_{j} \neq \emptyset$$
 iff $X^{-1}[\{x\}] \neq \emptyset$
iff $x \in X[\Omega]$

atoms
$$(A_{1,...,A_{n}}) = \{E : \emptyset = E = \bigcap_{j=1}^{n} B_{j} \text{ for some } (B_{j}) \in \prod_{j=1}^{n} \{A_{ij}, A_{j}\}\}$$

$$= \{X^{-1}[\{XJ\}] : x \in X \}$$
(d) Aince $B = \{X^{-1}[C] : C \in X\}$, and since $P(X)$ is
a field of subsets of X , B io ~ field of subsets
of Ω .
for $j=1,...,n$, A_{j} is expressible in terms of $A_{1,...,A_{n}}$
so $A_{j} \in B$. also, $A_{j} = X^{-1}[C_{j}]$ where $C_{j} = \{X: X_{j} = 1\}$.
 B is a field on Ω containing $A_{1,...,A_{n}}$.
Suppose B' is any field on Ω containing
 $A_{1,...,A_{n}}$. Then $B' \ge B$.

Thus B is the smallest field on
$$\Omega$$

Cortaining A_1, \dots, A_n .
B = field (A_1, \dots, A_n)

$$(A_j)_{j \in J}$$
, we get the complete field
generated by (A_j) . arbitrary unisons

Proph let
$$\Gamma$$
 be a v upward directed set of fields on Ω .
 $\forall B_1, B_2 \in \Gamma$, $\exists B_3 \in \Gamma$ s.t. $B_1, B_2 \subseteq B_2$.

Let
$$C = UT = \{c : c \in B \text{ for some } B \in T \}$$
.

upwards directed

$$\sigma(\mathcal{H}) = P(\mathbb{Z})$$

$$\stackrel{\text{cofinity}}{\underset{f \neq f}{\underset{f \neq g}{\underset{f g}{\underset{f \neq g}{\underset{f \neq g}{\underset{f g}{\underset{f \neq g}{\underset{f g}{\atopf g}{\underset{f g}{\underset{f g}{\underset{f g}{\underset{f g}{\atop_{f g}{\atopf g}{_{f$$

ey Let
$$\Omega = \mathbb{R}$$
 and $\mathcal{H} = \{(-\infty, r) : r \in \mathbb{Q}\}$.
fuld $(\mathcal{H}) = \{ \bigcup_{j=0}^{\infty} \mathbb{I}_{j} : I_{0} \text{ is of the form } (-\infty, \bigcup_{j=0}^{\infty}) \text{ or } \infty \text{ empty}$
 $n \in \mathbb{N}$ In $i_{0} \notin \text{ the form } [a_{n}, \infty) \text{ or } i_{0} \text{ empty}$
 $I_{i} \xrightarrow{i_{0}} o \notin \text{ the form } [a_{i}, \bigcup_{j=0}^{\infty}] \text{ or } i_{0} \text{ empty} \text{ for } 0 < j < n \}$

.

eg det
$$\mathcal{H} = \int \frac{d}{\prod_{i=1}^{n}} (a_i, b_i] : a_i, b_i \in \mathbb{R}, a_i \leq b_i \quad \forall i \end{cases}$$
 is also a Tt-system.
eg det X be a set ad let $A_{i,1,...,i}, A_n \subseteq X$. Then
 $\pi (A_{i,1,...,i}, A_n) = \{\bigcap_{i \in I} A_i : \phi \neq I \subseteq \{1,...,n\}\}$
Smilled π -system containing $A_{i,1,...,i}, A_n$.