This Let $f,g: X \longrightarrow (-\infty, \infty]$ be in the . Suppose If $dn = \int g dn$ are defined and $>-\infty$. Then If fg dn is defined and equals $\int fdn + \int g dn$.

If Let $h_1 = f^+ + g^+$ and $h_2 = f^- + g^-$. Then $h_1 : X \rightarrow [0, \infty]$ and $h_2 : X \rightarrow [X, \infty)$ are indice and $\int h_2 d\mu = \int f^- d\mu + \int g^- d\mu < \infty$ (since both arcless there so we $\int f_{1}\mu_1 \int_{1}^{1} d\mu > -\infty$). $f + g = (f^+ - f^-) + (g^+ - g^-) = (f^+ + g^+) - (f^- + g^-) = h_1 - h_2.$ $\int h_1 - h_2 d\mu = \int h_1 d\mu - \int h_2 d\mu \quad \text{by lump from last time.}$ $= \int f^+ d\mu + \int f^+ d\mu - \int f^- d\mu - \int f^- d\mu$ $= \int f^+ d\mu + \int g^+ d\mu$ $= \int f^+ d\mu + \int g^+ d\mu$

Now back to Rd:

(X, a, u) a mensure space.

if $f: X \longrightarrow \mathbb{R}^d$ then $f(x) = (f_1(x), \dots, f_d(x)) \quad \forall x \in X$ where $f_1, \dots, f_d: X \longrightarrow \mathbb{R}$.

from last time, f is mble iff firm, for an insu.

Defn as f is m-Sble iff each fire, for is m-Sble.

Proprie
$$f$$
 is μ -John iff f is mble a $\int |f| d\mu < \infty$.

If we know f is μ -John iff f , μ , f an all μ -John f f is μ -John the f is f

Conversely, if
$$\int |f| d\mu < \infty$$
 then $\forall j$, $\forall x \in X$,
$$|f_j(x)| = \sqrt{f_j(x)^2} \leq \int_{k=1}^{\infty} f_j(x)^2 = |f(x)| \quad \text{so} \quad \int |f_j(x)| d\mu < \infty \quad \text{so} \quad f_j \quad \text{is} \quad \mu - \int b \mu. \quad \Box.$$

Propried to
$$f:X \to \mathbb{R}^d$$
 be m-sole. Then $||fd_{jk}|| \leq ||f|| d_{jk}$.

If ut $y = ||ff||_{M}$ if $y = 0$ true is nothing to show.

if not, let $u = \frac{y}{|y|}$. Then $|y| = \frac{\langle y, y \rangle}{|y|} = \langle u, y \rangle = \langle u||ff||_{M}$

$$= \sum_{j=1}^{d} u_j ||f_j||_{M} = ||f_j||_{M} ||f_j||_{M} = ||f|||_{M} ||f||_{M} ||f_j||_{M} = ||f|||_{M} ||f||_{M} ||f||_{M}$$

The Dominated Convergence Theorem Let $f, f_1, f_2, f_3, \dots : X \longrightarrow \mathbb{R}^d$ be mble. Let $g: X \to [0, \infty]$ be mble with $\int g \, d\mu < \infty$.

Suppose $\forall x$ that $|f_n(x)| \in g(x) \ \forall n$ and $f_n(x) \to f(x)$ as $n \to \infty$.

Then
$$(n): \int |f-f_n| d\mu \longrightarrow 0$$
 as $n \longrightarrow \infty$.

(b): If
$$n d\mu \longrightarrow \int f d\mu$$
 as $n \longrightarrow \infty$.

<u>Proof</u>: (a) is already done.

(b)
$$\forall x \in X$$
, $|f(x)| \leq g(x)$, so $|f-f_n| \leq |f| + |f_n| \leq 2g$, so $f-f_n$ is μ . Then
$$\left| \int f d\mu - \int f_n d\mu \right| = \left| \int f-f_n d\mu \right| \leq \int |f-f_n| d\mu \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Back to probability theory:

If (X, a) is a mble space, a random variable in X is an F/a-measurable for $X:\Omega \longrightarrow X$

a real-valued RV is an F/B-musurable for X: 12 -> R where B = Borel (R).

If X is a real-valued RV and [XI dP < 00, Then $\int X dP$ is called the expected value of X, denoted E(X).

Functions expressable in terms of other functions:

Let X and Y be for an 1. To say Y is expressible interms of X memo $\forall \omega_1, \omega_2 \in \Omega$, if $\chi(\omega_1) = \chi(\omega_2)$ then $\gamma(\omega_1) = \gamma(\omega_2)$.

If f is a function by domain containing $\operatorname{Rng}(X)$ and $Y = f \circ X$, then Y is expressible in terms of X.

Conversely, $\sup_{x \in X} f \in X$ is expressible in terms of X. Let $f: \operatorname{Rng}(X) \to \operatorname{Rng}(Y)$ be given by $f = \{(X(w), Y(w)) : w \in \Omega\}$. Then $Y = f \circ X$.

Let $A_1,...,A_n$, $B \subseteq \Omega$. To say B is expressible in terms of $A_1,...,A_n$. Means 1_B is expressible in terms of $(1_{A_1},...,1_{A_n})$.

Propor Let $B \subseteq \Omega$ and let $X : \Omega \longrightarrow X$. Then 1_B is expressible in terms of X iff $B = X^{-1}(C)$ for some $C \subseteq X$.

If: (\Rightarrow) suppose 1_B is expressible in terms of X. Then $1_B = f \circ X$ for some $f \in R_M(X)$. $f(X(\omega)) = 1 \text{ if } \omega \in B, \quad f(X(\omega)) = 0 \text{ if } \omega \notin B. \text{ Let } C = f^{-1}(1).$ Then $B = X^{-1}(C)$.

 (\Leftarrow) Let $f(x) = 1_c$ so $B = f \cdot X$.

Corallary Let $A_1, \dots, A_n, B \subseteq \Omega$. B is expressible in terms of A_1, \dots, A_n If $B = X^{-1}(C)$ for some $C \subseteq \{0,1\}^n$ when $X : \Omega \to \{0,1\}^n$ is $X(\omega) = (1_{A_1}(\omega), \dots, 1_{A_n}(\omega))$.

Corollary fet $A_1, \dots, A_n, \subseteq \Omega$. Let $X = \{X(\omega) : \omega \in \Omega \}$ where X is an above. Let $B = \{B \subseteq \Omega : B \text{ in expressible in terms of } A_1, \dots, A_n \}$, Let C = P(X) then the map $C \xrightarrow{(R)} X^{-1}[C]$ is a bijection $C \xrightarrow{} B$.

If B is expressible in terms of A.,..., An then $\exists C \in C$ s.l. $B = X^{-}[C]$, and conversely (by above consllary). Range ((*) = B.

Now let $C \in C$. Then $X[X^{-}[C]] = C$ a Range (*) = C.

So X is one-to-one as well.

Corollary let $A_1,...,A_n$, X, ... X be as in the preceding carollary. Let m=|X|. then $m \in 2^n$ and $|B| = 2^m$. So $|B| = 2^n$.