$$\int is additive for simple for satisfying conditions.
More about a fields
$$I \text{ There is a smallest a field B on R containing all intervals.} \\ \text{ Let } \mathcal{Y} = \{G \in \mathbb{R} : G \text{ is open} \} \\ \text{ and } \mathcal{F} = \{G \in \mathbb{R} : G \text{ is open} \} \\ \text{ and } \mathcal{F} = \{F \in \mathbb{R} : F \text{ is closed} \} \\ \text{ then } \mathcal{Y}_{S} = \{\bigcap_{n=1}^{\infty} G_{n} : each G_{n} \in \mathcal{Y}\} \subseteq B \\ \underbrace{e_{T}}_{n=1} [0, 1] = \bigcap_{n=1}^{\infty} (-\frac{1}{n}, 1+\frac{1}{n}) \in \mathcal{Y}_{S} \\ \mathbb{R} \setminus \mathbb{Q} = \bigcap_{i \in \mathbb{Q}} (\mathbb{R} \setminus \{i\}) \in \mathcal{Y}_{S} \\ \underbrace{e_{T}}_{i \in \mathbb{Q}} [i \in \mathbb{Q} \subseteq \mathcal{Y}_{S}, \text{ then } \mathcal{Y} = \mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q}) \text{ would be } \\ a \quad \text{ countable intersection } \mathcal{Y} \text{ dense open subsets} \\ of \mathbb{R}, \quad bot a \quad \text{countable intersection of dense open} \\ \text{ subsets of } \mathbb{R} \text{ is dense in } \mathbb{R}, \text{ by the Baire} \\ \text{ Category Theorem.}) \end{aligned}$$$$

$$\mathbb{Q} = \bigcup_{\mathbf{1} \in \mathbf{Q}} \{\mathbf{1}\} \in \mathcal{F}$$

Page 1

$$\begin{aligned} \mathcal{L}_{c} \mathcal{L}_{fer} & \mathcal{L}_{s} & \mathcal{L}_{s$$

Proof: Let a bethe sel of all A S X s.t. for each

We write
$$(l = \sigma(E))$$

depends on X too.

Def: if X is a topological space, the barel or field on X is
Barel
$$(X) = \sigma (\{ u \in X : u \text{ is open } \})$$
.

g fet $H = \{(a,b] : -\infty < a \le b < \infty\}$. $\sigma(H) = Borel(R)$ $p : Borel(R) = \sigma(Y)$.

~~

$$(a_1b] = \bigcap_{n=1}^{\infty} (a_nb+\frac{1}{n})$$
 so $H \subseteq \sigma(\mathcal{L})$, so $\sigma(H) \subseteq \sigma(\mathcal{L})$.

Let
$$G \in \mathcal{J}$$
. Let $\mathcal{U} = \{(a_1b]: a, b \in \mathbb{Q}, a < b, (a, b] \in G\}$.
Let $\mathcal{U} = \mathcal{U}\mathcal{U}$. Then $\mathcal{U} \in G$. And if $x \in G$ then
 $x \in (x - \delta, x + \delta) \subseteq G$ for some $\delta > 0$.
Choose vational #s $a \in (x - \delta, x)$ and $b \in (x, x + \delta)$.
Then $x \in (a_1b] \subseteq G$. So $x \in \mathcal{U}$. So $\mathcal{U} = G$.
So $\mathcal{J} \subseteq \sigma(\mathcal{H}) = G$. $\sigma(\mathcal{H}) \subseteq \sigma(\mathcal{H})$.
So $\sigma(\mathcal{H}) = B_{oral}(\mathbb{R})$.

Each of the following collections
generates Borel (R) too:

$$1 \quad \{(a_1, \infty) : a \in \mathbb{R}\}, \{(-\infty, b) : b \in \mathbb{R}\}\}$$

 $2 \quad \{[a_1, \infty) : a \in \mathbb{R}\}, \{(-\infty, b] : b \in \mathbb{R}\}\}$

 \underline{e} let $\sum = \{0,1\}^N$

for each
$$n \in \mathbb{N}$$
, for each $\mathcal{A} = (\mathcal{A}_1, \dots, \mathcal{A}_n) \in \{0, 1\}^n$,
Let $\Sigma(\mathcal{A}) = \{(t_1, t_2, \dots) \in \Sigma : t_i = \mathcal{A}_i \; \forall i \leq n\}.$

The natural σ -field on Σ is $\sigma(\{\Sigma(s) : n \in \mathbb{N}, s \in \{0, 1\}^n\})$. This is Borel (Σ) . Fact: There is a unique measure m° on Borel (R) s.t. $\forall a_1 b \in \mathbb{R}$, if $a \leq b$, $m^{\circ}((a_1 b_3) = b - a$. m° is alled Borel-febesgue measure on R.

ey Thre is a unique number
$$P$$
 on Borel (Σ) s.t.
for each $n \in \mathbb{N}$ and for each $s \in \{0, 1\}^n$, $P(\Sigma(s)) = \frac{1}{2^n}$