- . In men put their hats in a sack
- . each war draws a hat & puts it on.

P(at least one man gets his own hat back) =?

for i=1,...,n, let $A_i=$ event that i^m man gets his own but back. Then $p(A_i)=\frac{(n-i)!}{n!}=\frac{1}{n}$.

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i, \langle i_{z}} P(A_{i_{1}} A_{i_{2}}) + \sum_{i, \langle i_{2} \langle i_{3}} P(A_{i_{1}} A_{i_{2}} A_{i_{3}}) - \cdots$$

$$+(1)^{n-1}\sum_{i_1,\dots,i_n}P(A_{i_1}\dots A_{i_n})$$
 $(1 < \dots < n)$
 $actually P(A_1 \dots A_n)$

$$= \sum_{i=1}^{n} \frac{1}{n} - \sum_{i_1 < i_2} \frac{(n-2)!}{n!} + \sum_{i_1 < i_2 < i_3} \frac{(n-3)!}{n!} - \cdots + (-1)^{n-1} \frac{1}{n!}$$

$$= \sum_{N=1}^{K=1} (-1)_{K-1} {K \choose N} \frac{N!}{(N-K)!} = \sum_{N=1}^{K=1} \frac{K!}{(-1)_{K-1}} = 1 - \sum_{N=1}^{K=0} \frac{K!}{(-1)_{K}} \longrightarrow 1 - \frac{\epsilon}{1}$$

For any event B, $E(1_8) = P(B)$

For any bounded RVs X, ,..., X,

$$E(x_1 + \cdots + X_n) = E(x_1) + \cdots + E(x_n)$$

Let
$$A_1, \dots, A_n$$
 be events.

$$P(A_1 \cup \dots \cup A_n) = E(1_{A_1 \cup \dots \cup A_n}).$$

Wo W

$$\int_{A_{1} \cup \cdots \cup A_{N}} = \left| - \int_{A_{1}^{c} \cap \cdots \cap A_{N}^{c}} = \left| - \int_{A_{1}^{c} \cdots \cap A_{N}^{c}} \right| \right|$$

$$= \left| - \left(\left| - \right|_{A_{1}} \right) \cdots \left(\left| - \right|_{A_{N}} \right) \right|$$

$$= \left| - \sum_{I \in (N)} \prod_{i \in I} \left(- i \right)_{A_{i}} \right|$$

$$= \sum_{I \in (N)} \prod_{i \in I} \bigcap_{i \in I} A_{i} \right|$$

$$= \sum_{I \in (N)} \prod_{i \in I} A_{i} \right|$$

$$\int_{O} P(A_{i} \cup \dots \cup A_{n}) = \sum_{\substack{I \in [n] \\ I \neq \emptyset}} (-1)^{|I|+1} P(\bigcap_{i \in I} A_{i})$$

Simple functions.

Let (X, Q) be a mble space a set a σ -algebra on X

Let Y be a set. A simple function from X to Y is a function $\varphi: X \longrightarrow Y$ set. $\varphi[x]$ is finite and $\forall y \in \varphi[x]$, $\varphi^{-1}[\{y\}] \in Q$. $(\varphi^{-1}[\{y\}] = \{x \in X: \varphi(x) = y\} = \{\varphi = y\})$.

Proph: Let $Y: X \longrightarrow Y$ be simple. Let $B \subseteq Y$. Then $Y^{-1}[B] \in \mathbb{Q}$. Pf $B = \bigcup_{y \in B} \{y\}$, So $Y^{-1}[B] = \bigcup_{y \in B} Y^{-1}[\{y\}]$, which is a finite union of sets in A, so it's in A.

Propri Let $\Psi: X \longrightarrow Y$ be simple, and let $h: Y \longrightarrow Z$.
Then $h \circ \Psi$ is simple.

Pf Obvious. (but it does use the above propa).

Propri: Let $\Psi_k: X \longrightarrow Y_k$ for k=1,...,n. Let $Y=Y_1 \times ... \times Y_n$.

Define $\Psi: X \longrightarrow Y$ by $\Psi(x) = (\Psi_1(x),..., \Psi_n(x))$.

Then Ψ is simple iff $\Psi_1,...,\Psi_n$ are simple.

Pf: Suppose P is simple. $P_n = \pi_{\kappa}$, φ for all κ . Suppose $P_1,..., P_n$ are simple Then φ is a briously simple