RanseyTheory. Graham et al

Fad: Let ACN, J'(A)>0. then VK, the set of differences of APs in A of length K is IP*. In particular, it is syndetic.

Three principles of ramsey theory:

- 1. Well organized structures are not destroyable by finite partitions,
- 2. Three is always a notion of language behind a partition result.

 X+y=2 Schur equation is partition regular.

EX. If $\overline{J}(A) > \frac{1}{2}$, then A contains $x_1y_1z_1 = 1.4 + y_2 = 2.4$ hint: $A \cap A - x \neq \emptyset \quad \forall x \in A - A = N.$

3. "Good" configurations which are present in lungar sets are abundant.

if d(A) >0, A-A is syndetic (actually it is A*)

Ex: An application of vorusing's theorem: If a Δ -set is finitely partitioned, one piece contains a Δ -set.

Note: Set of differences is IP^* but not Δ^*

Recall: {n: || n2a|| (83 is |p* but not d*.

(Schri 1916)

(Schri 1916)

Theorem: if NEW is Fixed & p. prim is longienough, 3x, y 12,

EX:

Web O med P, $x^n + y^n \equiv z^n \mod p$.

thint: use finitistic version of partition-regularity of X+y=Z.

take multiplicative subgroup of powers of N, look at cosets of this subgroup.

Browner's theorem: (Joint extension of vol 4 schur.)

If finite coloring N= Q.C., one C. contains, Vk. configurations

of the form {2, y, y+2, y+22,..., y+x23.

Cometric Ramsey's Theorem: If \$\overline{Z} \text{2/pZ} = V_{\vec{p}_p} = \int C_i turn one of C_i contains arbitrarily large affine subspaces

Some therens which follow easily from holes-senset. (all exercises)

- 1 vdW (with 1px-ness of set of d).
- 2. youetric varuey's theorem
- 3. 2d vdW
- 4. "Combinatorial" planes, spaces, etc. (multidim $HJ \Rightarrow Multi-dim vdW$). $\{W(t_1,t_2): t_1,t_2 \in A\}$

What is d* in V.? Compare to dx in (1N, X)

Ex Check asymptotic invariance of dx by multiplicative shifts

Λ

Sequence (Xn) C [6,1] is uniformly distributed if

Y (a,b) C (0,1], # { | = n = N : xn = (a,b) } _____ b-a.

Example: rational #s by in creating dominimates

na med 1, n² d mod 1, n° mod 1, c>0, c & 2,

n log²n mod 1

In fact "almostall" sequences are Ud.

 $\forall f \in C(0,1], \quad \frac{1}{N} \sum_{n=1}^{N} f(X_n) \xrightarrow{N \to \infty} \int_{\delta}^{1} f(x) dx$

Theorem: a number $x = \sum_{n=1}^{\infty} \frac{x_n}{2^n}$, $x_n \in \{0,1\}$ is base-2 normal (i.e. (x_n) is bound soquence