Can $\mathbb{N}=C_{1} \cup C_{2}$ with $d\left(C_{1}\right)=0$ and $\bar{d}_{x}\left(C_{2}\right)=0$ ?
Ex:

$$
\operatorname{limsupp}_{n \rightarrow \infty}^{\downarrow} \frac{\left|C_{2} \cap F_{n}\right|}{\left|F_{n}\right|}
$$

where $F_{N}=\left\{a_{N} p_{1}^{i_{1}} p_{2}^{i_{2}} \ldots p_{N}^{i_{N}}, 0 \leq i_{j} \leq N\right\}$

Note: $\bar{d}_{x}$ (squore-free) $=0$
So $\bar{d}_{x}(k$ th power free $)=0$
So we can get within $\varepsilon$. (since $d(k$ th pomer-free) $\rightarrow 1$ as $k \rightarrow \infty$ )

Ex:

Prove that $|A|+|B|=2^{n}$
(b) Prove that $\exists c>0$ s.t. $\forall n \exists$ at least c.n! properties $P$ on subsets of $\{1, \ldots, n\}$ for which $P^{*}=P$.
(c) What is the true asymptotic for (b)?
(Ankan believes it is larger than $n$ !)

A mats ix is Unimodal if every Square submatrix nus determinant 0,1 , or -1 .

Sylvester's Criterion for positive definiteness of matrix: every principal square submatrì has positive determinant


Ex: Let $(x, d)$ be a connected compact metric space.
Pave that there exists $\alpha>0$ such that

$$
\begin{aligned}
& \forall x_{1}, \ldots, x_{n} \in X, \exists x \in X \text { s.l. } \\
& \frac{d\left(x, x_{1}\right)+\cdots+d\left(x, x_{n}\right)}{n}=\alpha
\end{aligned}
$$

Midterm (proof)
any bistochast ic matrix is a convex combination of permutators.
$\left\{\begin{array}{l}1{ }^{n} \text { Konig-Egervory theorem: if } A \text { is on } n \times n 0-1 \text { matrix then }\end{array}\right.$ the minimum \# of lines needed to cover all $1^{s}=$ the maximum size of "independent" set of 1 ".
(bistochastic.
$A=\left(a_{i j}\right)$. Observation: you need $n$ lines to kill all non-zero elements.

Suppose $m$ lines will do. then $\sum_{\substack{a_{i j} \neq 0 \\ a_{i j} \epsilon l_{k}}} a_{i j} \leq m<n$
So by $K-E \quad P$ a permututor and $c>0$ s.t.
A- cP has nonnegative elements and hus one move zero, and sum of elements over any row or column is 1-C (multiply by $\frac{1}{1-c}$ to get back to a bistochastic matrix).

How to prove B-VN without K-E?
$\left(\begin{array}{ccc}* & * & \\ * . & . \\ . & .\end{array}\right) \quad \begin{aligned} & \text { Can assume } \\ & \text { also assume } \\ & \text { ald }\end{aligned}$
in general, can create


Reading
Three famous theorems on finite sets (Especially marriage thu).

Hales-Jewett theorem (Polymath 1)
( $\rightarrow$ in high-enough dimension tic-tac-toe, thus is always ${ }^{\circ}$ winner.

Let $A \cup\{t\}$ be a finite alphabet. A finite word over Au \{t\} ~

$$
\left\{a_{1}^{\prime \prime}, a_{2}, a_{3}\right\}
$$

is nontrivial (for owporpoges) if it contend $t$.
Def $A$ combinatorial line: $\left\{\begin{array}{c}\tilde{W}(t) \\ 1\end{array}: t \in A\right\}$ nontrivial
word contuinngt which is viewed as a variable
$A^{n}=$ all words of length $n$.
Hales-lewett, If (the size of) $A$ is fixed, them $\forall r \in \mathbb{N} \quad \exists n \in \mathbb{N}$ sit. if $A^{n}=\bigcup_{i=}^{V} C_{i}$ then at least one $C_{i}$ contains a combinatorial line.

Ex: show $\mathrm{HJ} \Longrightarrow \operatorname{vd} W$

$$
H J \Longrightarrow V_{\mathbb{F}_{p}}=\bigcup_{i=1}^{r} c_{i} \Rightarrow \text { one } c_{i} \text { is } \text { is }^{\text {shift of }} \text { subspace-rich }
$$

