Lec 10/29 Monday, October 29, 2018 14:21

Note:
$$\overline{d}_{x}(square-free}) = 0$$

So $\overline{d}_{x}(kth power free}) = 0$
So we can get within E. $(since \overline{d}(kth power-free}) \rightarrow 1 \rightarrow k \rightarrow \infty)$

(a) Let A, B be properties of subsets of
$$21, ..., n 3$$

(i.e. A, B $\leq P(31, ..., n3)$) so that $A^* = B$ and $B^* = A$.
Prove that $|A| + |B| = 2^n$

•

•

Page 1

Sylvester's Criterion for positive definiteness Of matrix: every principal square submatrix has positive determinant

Let (X, d) be a connected compared metric space. Prove that three exists ~ >0 such that VX,,..., X EX, J KEX s.L. $d(x, \chi_1) + \cdots + d(\chi, \chi_n) = \alpha$ Midtern (proof) Birkhoff-von Neumann: my bistochastic metrix is a convex combination of permutators. König-Egervory theorem: if A is an nxn o-1 matrix then the minimum # of lines needed to cover all 1^s = the maximum size of "independent" set of 1^s. (bistochastic. A= (aij). Observation: you need n lives to kill all non-zero elements.

Suppose m lines will do. then
$$\sum_{\substack{a_{ij} \neq 0 \\ a_{ij} \neq 0 \\ a_{ij} \neq 0 \\ a_{ij} \neq j \\ k}}$$

So by K-E J P a permutator and C> 0 s.t.
A-cP has nonnegative elements and
has one more zero, and sum of elements
over any row or column is 1-c (multiply by $\frac{1}{1-c}$ to
get back to a bystochastic matrix).

How to prove B-VN without K-E?

$$\begin{pmatrix} * & * \\ * & \cdot \\ \cdot & \cdot \end{pmatrix}$$
 Can assume $*$'s are $\neq 0$.
Also assume no 1's.

Page 3

is nontrivial (for our purposes) it it contains t.
Def A combinatorial line : { W(t) : tex }
nondrivial
Word containing t which is viewed as a variable
A" = all words of length n.
Hales-Jewelt, If (the size of) A is fixed, then
$$\forall r \in \mathbb{N}$$
 and \mathbb{N} s.t.
if $A^n = \bigcup_{i=1}^{n} C_i$ then at least one C_i contains a combinatorial line.
Estimates the substantial line is shift of

Show
$$H_{J} \implies \sqrt{d} W$$

 $H_{J} \implies \sqrt{H_{F_{p}}} = \bigcup_{i=1}^{J} (i \implies one C_{i} is^{V} subspace - vich$