Let
$$S = \frac{3}{2}: 0 \le \operatorname{Rezcl}{3}$$
. Assume f is multic in S
and cont. on S (and hat fis bdd on S), and that
 $|f(iy)| \le m_0$, $|f(i+iy)| \le m_i$. then $\forall x \in (0, n)$,
 $|f(x+iy)| \le m_0^{1-x} m_i^x$

Case 1:
$$M_0 = M_1 = 1.$$

Moreover $g(z) = \frac{f(z)}{1+t+2}$, $|1+t+2| = |1+t+1+2|$
So $g(z) \rightarrow 0$ as $|y| \rightarrow 0$
 $V_{1,since, x>0}$

Hive too
the we know
$$\exists y_0 > 0 \ r.t.$$
 $|g(z)| \leq |for ||mz|>y.$
 $j = s analytic in S & cts in its closure. Let D =
 $|g| \leq | on all boundaries of D, and so
by maximum principle |g| \leq | on D
and so |g| \leq | on S. thus |f| \leq ||tt z|.$
Since t was arbitrary, $|f| \leq |.$$

Cabe 2:
$$M_0 \neq 0 \neq M_1$$
 are arbitrary.
Then first consider $\tilde{f}(z) = \frac{f(z)}{M_0^{1+2}M_1^2}$. This isomedytic
in S & ets in S. And if $z = ig$ hun
 $|m_0^{1-2}m_1^2| = M_0^{1-x}M_1^x = M_0$. if $z = 1+ig$
 $Then |M_0^{1-2}m_1^2| = M_1$. So $|\tilde{f}(iy)| \leq 1$, $|\tilde{f}(1+iy)| \leq 1$.
So \tilde{f} satisfies conditions in pt. 1. Then
 $|\tilde{f}(z)| \leq 1$. $\forall z$ so $|f(z)| \leq |M_1^{1-2}M_1^2| = M_0^{1-x}M_1^x$.

iii) $W_1 = 0$ or $W_0 = 0$. We repluce M_0 by $M_0 + \varepsilon$, M_0 $M_1 + \varepsilon$. to use CUSEZ to get $|f(z)| \in (M_1 + \varepsilon)^{1-\chi}(M_1 + \varepsilon)^{\chi} \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Branchos of log of
$$f(z)$$

Branchos of log of $f(z)$
Def g is a branen of log f in a Journah D if
g is analytic in D, and $e^{J(z)} = f(z)$ $\forall z \in D$.

. .

Remark Not a good idea to trink of log
$$f$$
 as a
composition log of.
ey $f(z) = e^{z}$, log $(e^{z}) = z + 2\pi i k$. However if you
trink of the composition you'll make unnecessary cuts.

Theorem.
$$\exists a$$
 branch of logt in a donard D lift
 $\forall pircanise smooth closed $\forall \subseteq D$, $\int \frac{f'(z)}{f(z)} dz = 0$.
 $\forall \qquad (4)$
 $Froof: Assume (*) holds. Then $\exists a primitive of \frac{f'(z)}{f(z)}$,
 $call it g(z) so g'(z) = \frac{f'(z)}{f(z)}$. Define $g(z)$ to be
 $\log f(z_0) + \int \frac{f'(s)}{f(s)} ds$ where $d \subseteq D$ goes from z_0 to z .
 $f(z) = \frac{f(z_0)}{f(z_0)} + \int \frac{f'(s)}{f(s)} ds$$$

Now
$$\frac{d}{dz}\left(e^{-g(z)}f(z)\right) = 0$$
 and $e^{-g(z_0)}f(z_0) = 1$, \square

Assume
$$g$$
 is a branch of logf.
Ann $\frac{d}{dz}g(z) = \frac{f'(z)}{f(z)}$ so g is a privative for $\frac{f'(z)}{f(z)}$ so (x) holds D