Then if famolytic IN U~ 17.3 & cts in U, it is analytic in U.

 $\frac{1}{m} \left(\text{Liouville} \right) \quad \text{Λ bounded entire function is constant.}$ $\frac{1}{m} \left(\text{Liouville} \right) \quad \text{Λ bounded entire function is constant.}$ $\frac{1}{m} \left(\text{Liouville} \right) \quad \text{Λ bounded entire function is constant.}$

Let If(z) = M Yz. We name

 $\left|f'(z)\right| \leq \frac{1}{2\pi} \int \frac{|f(z)|}{|z-z_0|^2} |dz| \leq \frac{M}{2\pi \rho^2} \int |dz| = \frac{M}{\rho} \longrightarrow 0 \text{ as } \rho \longrightarrow \infty.$ $k(z_0,\rho)$

So $f'(z_0) = 0$. Since z_0 whiting, f wastomt \square

Find amental Theorem of Algebra

Arry polynoment p(2) & [[Z] has a root unless p(2) constant

Proof: define $f(z) = \overline{p_{(1)}}$. If p has no roots, f(z) is a bounded entire function so f is a constant. \square

(note f(z) -> 0 as 121-20, so it's bill outside of a circle
4 Cts inside (on a compact set) & so bounded).

Max Modulus thm.

If f is analytic in a domain DC (then i'f

If attains a mix valve M at an interior pt,

then f is constant.

Proof: the $D = D(Z_0, V)$ s.t. $D \subset D$. Then C.I. form by Jives $f(Z_i) = \frac{1}{2\pi i} \int \frac{f(Z_0)dZ}{Z-Z_0} dz$ So were $M = f(Z_0)$

 $|M = \left| f(z_s) \right| = \frac{1}{2\pi} \int_{0}^{2\pi} \left| f(z_s + re^{i\tau}) \right| |\partial t| \leq \frac{1}{2\pi} \int_{0}^{2\pi} M |dt| = M$

this is the $\forall r$, so f is constant on $D(\xi_0, r)$.

Now this near $U = \{ \exists \in D : |f(\exists)| = M \} \text{ is spen, so is}$

V= {ZED: |(Z)| < MZ Since f is continuous invinuous invinuous. An open set.

but Dis connected so V= b. SO [f(x)=M Y ZED.

Now by C-R equations, f is constant.

Cordley If Dis abounded domain & f: D -> Cis cta & F: D -> r is a weytic, Then (fl take) its cts & F: D -> C is a mytic, Then (fl Take) its max value or D = D \ D.

if f construt, obvious. How suppose f non-constant.

If cts on comparet set so takes a max, but f analytic on D so does not take a max three boom.

If If attacks max at RoeD, I constant & so

max is also attacks on boundary.

D.

Schwerz lemma:

and cts in D.

Assume f is analytic in $\Delta(0,1)^{1}$ and $f(\delta)=0$ and $|f(z)|\leq |\forall z\in\Delta(0,1)$. Thum i) $|f'(0)|\leq 1$ ii) $|\frac{f(z)}{z}|\leq 1$. iii) unless $f(z)=e^{i\phi}z$, $|\frac{f(z)}{z}|\leq 1$.

 $\frac{P(1)}{Z} = \begin{cases} \frac{f(e)}{Z} & \text{is a nallytic on } D(0,1) & (\frac{f(2)}{Z} \text{ anallytic}) \\ f'(0) & \text{is a nallytic except } 0, \text{ g cts} \end{cases}$

the |g(z)| attains max on boundary of D, which is $\leq T = 1$ So is in follow. If $f(z) = e^{i\phi}z$, g is constant so we tout have Strict inequality. o.w. we do.