Det convergence of Series \(\frac{\infty}{\infty} \text{\text{En}} \) \(\infty \) convergence of \(\infty \). \(\frac{\infty}{\infty} \text{\text{En}} \) \(\infty \) \(\infty \) convergence of \(\infty \).

Defin A sequence $\sum_{N=-\infty}^{\infty} Z_N$ is said to converge if $S_{m,n} = \sum_{k=-\infty}^{\infty} Z_N$ converges in the sense that given Z_N , Z_N

Thing Z Zk converges iff both Z Zk and Z Zk both converge.

Pf: Smin = 2 2 + 2 2 - k

Defn ZZ Le converges a 450 lottery if 2 12 1 converges.

Im absolute convergence = convergence.

If triangle inequality in tail. Sm-Sh.

 $\frac{\log}{\int_{N=1}^{\infty} \frac{1}{N}} = \sum_{N=1}^{\infty} \frac{1}{2^{N-1}} + \sum_{N=1}^{\infty} \frac{1}{2^{N}} = \sum_{N=1}^{\infty} \frac{1}{2^{N}} + \sum_{N=1}^{\infty} \frac{1}{2^{N}} = \sum_{N=1}^{\infty} \frac{(-1)^{N}}{2^{N}} - \sum_{N=1}^{\infty} \frac{(-1)^{N}}{2^{N}} = \sum_{N=1}^{\infty} \frac{(-1)^{N}}{2^{N}$

Converge, but $\sum_{n=1}^{\infty} |x| = \sum_{n=1}^{\infty} d_{n}v$.

Thum if 2n = Xn+iYn , ZZn war.) If Zxn, Zyn war.

Thy if ZEn abs. conv. , ZZong abs conv.

All tests for also whe convergence work.

If consider 2 2 2 2 determine the set of 2 for which this converges

\(\frac{2}{2} \) \(\frac{2}{2} \) \(\frac{1}{2} \) \(\frac{1}{

ans cons. for 121<2. This cons. For P1> 1/2.

56 \(\frac{7}{2} \) \(\text{cohv.} \) in Almobo \(\{ \frac{7}{2} \) \(\frac{1}{2} \) \(\frac{1}{2

Consider: $\sum_{n=1}^{\infty} f_n(z)$. Com define (i) point-wise convergence (ii) Uniform convergence (iii) Normal Convergence

in terms of convergence of $S_n(z) = \sum_{k=1}^{N} f_k(z)$

Theorem a necessary would from for possitivise conveyance of a series $\frac{\infty}{2}$ full) is that $\lim_{k\to\infty} f_k(z) = 0$ $\forall z$.

Theorem (Weierstrass M-test)

Suppose f_n is defined in $A \leq C$ and for even $z \in A$, $|f_n(z)| \leq M_n$.

Then if $\sum_{n=1}^{\infty} M_n < \infty$ then $\sum_{n=1}^{\infty} f_n(z)$ converges uniformaly and absolutery in A. (2)

Front: Consider $\{S_n(z) = \sum_{k=1}^{n} f_k(z)\}_{n=1}^{\infty}$. It is enough to show that (S_n) is uniformly caucing in A for (1)

eg $\frac{\partial}{\partial x} = \int_{\mathbb{R}^2} \left(\frac{1}{2}\right)$. Show it converges unif. In $A_{\sigma} = \{2: \text{Re} = 7, \sigma\}$ is. $\left|\frac{1}{n^2}\right| = \left|n^{-2}\right| = n^{-\chi} \le \frac{1}{n^{\sigma}} \quad \text{and} \quad \sum_{n=1}^{\infty} \text{converges sike } \sigma > 1.$

This Suppose f_n is continuous in an open set $U \in C$ and $\sum_{n=1}^{\infty} f_n(z)$ converges normally in U. then $f(z) = \sum_{n=1}^{\infty} f(z)$ is converges normally in U. Then $f(z) = \sum_{n=1}^{\infty} f(z)$ is $\sum_{n=1}^{\infty} f_n(z) = \sum_{n=1}^{\infty} f_$