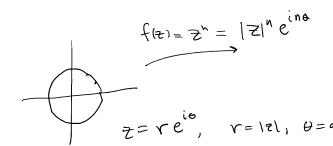
Lec 1/11

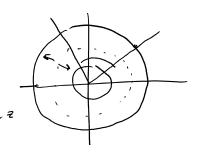
Thursday, January 11, 2018 10:19

. neZ

eg mapping properties of Zh on

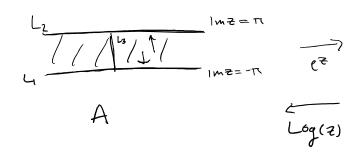
- (a) circles around the origin
- (b) Straight likes emmatry from the origin.





angle is not preserved between two straight lines.

ey unvalence of f(z) = e in the domain -TI < Imz = TI



$$f(L_2) = f(L_3)$$

$$= \{ \{ A \} \}$$

 $e^{\frac{z}{2}}$ is univalent: if $f(z_i) = f(z_i)$ then $e^{\frac{z}{2}i^{-\frac{1}{2}}z} = 1$ so $\frac{z}{2}i^{-\frac{1}{2}}z = 2i\pi k$ k=0 by restriction.

univalence works for {z: 0, < |mz = 0, + zr3 for any to.

what is
$$f^{-1}$$
? if $\theta = \pi$ then $f(w) = \log_{\theta}(w) + 2i\pi$.
for general θ_0 , $f^{-1}(w) = \ln |w| + i$ and ω
with $\theta_0 < \arg w \le \theta_0 + 2\pi$
branch Cut

Plane topology
$$C = \mathbb{R}^2 \quad \text{we evelidean norm.}$$

$$Z \in C, \quad |Z| = \int x^2 + y^2$$

Defs Zo is an interior point of $A \subseteq C$ if $\exists r > 0$ s.t. $\Delta(z_0, r) \subseteq A$.

Zo is a boundary point of $A \subseteq C$ if for all r > 0 $\Delta(z_0, r) \cap A \neq \not > \neq \Delta(z_0, r) \cap (C \setminus A)$ $A \subseteq C$ is open if $\forall x \in A$, $x \in S$ an interior point. $A \subseteq C$ is closed if $C \cap A$ is open. $\Longrightarrow A$ contains all of its boundary pte. $A \subseteq C$ is closed if $C \cap A$ is open. $\Longrightarrow A$ contains all of its boundary pte. $A \subseteq C$ is closed if $C \cap A$ is open. $\Longrightarrow A$ contains all of its boundary pte.

Delni an if YERO BNEW s.t. lan-an/< q if NON.

Properties: Zn > Zo \ ReZn -> ReZo, ImZn -> ImZo.

it Zn -> Zo j Wn -> Wo , Zn +Wn -> Zo + Wo

czn → czo Vce C.

Znwn -> Zowo

if Wo = 0 mm Z /wn -> to/w.

Def Z. is an accumulation point of (Zn) if Yr>0 $\exists k \text{ st.} \quad \exists_k \in \underline{\Lambda}^{*}(Z_{\circ}, \Gamma) . \quad |\Delta(Z_{\circ}, \Gamma) \wedge (Z_{n})_{k=1}^{\alpha_{0}}| = \infty.$

Thom Zo is an accom, pt. of (Zn) ?; iff I subsequence (Zne) 20 for which Znx -> Zo isk -> 00.

If $Z_n \to Z_o$ then wey subsequence $Z_{n_k} \to Z_o$

Thm Z. E A iff 3 (Zn) = CA s.t. Zn -> Z.

Thu A is closed iff A contains every acc. pt. of every (2n)= < A.

Det f is continuous at 20 EACO if given 870 3 S, >0 sit. |2-20| < S, => |f(2)-f(20)|

equiv: $f(A \cap \Delta(z_0, S_i)) \subset \Delta(f(z_0), \varepsilon)$

This: If $f: A \to \mathbb{C}$ and $g: B \to \mathbb{C}$, both continuous at $z_0 \in A \cap B$, then $f \pm g$, cf, fg, Ref, Imf, IfI, f and $(i+g(z_0) \neq 0)$ f are even cts at z_0