The 3 !! CCD $\left(f_{1}, \ldots, f_{m}\right), f_{1}, \ldots, f_{m} \in F(x]$
Proof

$$
I=\left\{\sum_{i=1}^{n} g_{i} f_{i}: g_{1}, \ldots, g_{m} \in F[x]\right\}
$$

$g]=I$ for $g \in F[x]$, (bettertum subring; ideal)
Let $h \in I$ of least degree.

$$
f_{j}=Q h+R
$$

$\operatorname{deg} R<\operatorname{deg} h$ or $R=0$. $\operatorname{deg} R \geqslant \operatorname{degh}$ since $R=f_{0}-Q h \in I$
and an other common olliser of $\left\{f_{1}, f_{2, \ldots}, f_{m}\right\}$
drordef h since h is a combination of the polynornars,
$h^{\prime} \mid h$ and $h \mid h^{\prime} \rightarrow h=\theta_{0} h^{n}$ fora uni e_{0} and so h is unique.

Cor $\quad\left[f_{1}, \ldots, f_{m}\right\}$ are relatively prime $\Leftrightarrow g_{1}, \ldots, g_{m}$ sit. $j_{1} f_{1}+\cdots+g_{m} f_{m}=1$.

Let $p \in F(x)$ be prime assume $p \mid f g$. then $p \mid f$ or $p \mid g$.
Prof say elf. Then $1=k p+l f$. Then $g=k p g+l f g$. p divide $f g$ so p divides g.

PIThy. Let $f \in F[X]$. Then either f is a unit or \exists a unique (ur to units)
factorization of $f=p_{1} p_{2} \ldots P_{m}$ with p_{1}, \ldots, p_{m} prime. If $f=q_{1} q_{2} \cdots q_{0}$, then mos and after veindexing, $P_{i} \cong q_{i} \forall_{i}\left(P_{i}=\epsilon_{i} q_{i}\right.$ for a unit $\left.\epsilon_{i}\right)$.

Prof: Bi moluction on degree of \& (easy).
!: Induction on \# of primes (easy).

Ex: $f \in F[x] \operatorname{deg}(f) \leq 3 . \quad f$ is prime \Leftrightarrow f has no roots in F.

Note: $f=x^{2}+1=\begin{gathered}(x+1)^{2} \\ 11\end{gathered}$ in F_{2}.

$$
\begin{gathered}
x^{2}+2 x+1=x^{2}+1 \\
\text { "1 } \\
0 x
\end{gathered}
$$

Prof $\operatorname{dey} f=1 \Leftrightarrow f$ prime. deg $t=2,3$ and t hay a root $\xi \Leftrightarrow f=P(x-\xi)$ and is not prime. (roe snit work for dey $73:\left(x^{2}+1\right)^{2}$

$$
\begin{aligned}
& f=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}} \text { uniquely where } p_{i} \in F[x] \text { prime and } k_{i} \geq 0 \\
& g=p_{1}^{l_{1}} \cdots p_{m}^{l_{m}} \\
& (f, g)=p_{1}^{l_{m}(l, x)} \cdots p_{m}^{\min \left(l_{m}, k_{m}\right)}
\end{aligned}
$$

turn $F(x)$ into a field. (inject it)
$F[x] \hookrightarrow F(x)$ rationed
Poallaling $\mathbb{Z} \longleftrightarrow \mathbb{Q}$

$$
\begin{aligned}
& \left(f_{1}, g_{1}\right),\left(f_{2}, g_{2}\right) \in F[x] \times F[x] \\
& \left(f_{1}, g_{1}\right) \sim\left(f_{2}, g_{2}\right) \quad \text { iff } \quad f_{1} g_{2}=f_{2} g_{1}
\end{aligned}
$$

\sim is an equivalent recreation:
(symutric, reflexive transitive)

