Convex sets, convex hull.

A set $S = \{x_0, x_1, ..., x_n\} \subseteq \mathbb{R}^k$ is in general position if it is not contained in any affine subspace of dimension < n.

Sin gur pos. > NEK.

Det for a finite set S in general position, the simplex associated to S is $\sigma(S) = Conv(S)$.

The points X; we called vertices of o(8).

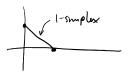
V subset $T \subseteq S$ the simplex $\sigma(T) \subseteq \sigma(S)$ is called a face of $\sigma(S)$. If |T|=2, we call $\sigma(T)$ an edge of $\sigma(S)$.

The dimension of $\sigma(S)$ is $dim(\sigma(S)) = n = |S|-1$.

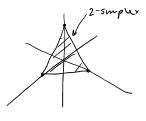
In general, a subset $\sigma \in \mathbb{R}^k$ is called a simplex if $\sigma = \sigma(s)$ for some S in gn. pos.

The Standard N-SIMpless is o(8) where

n=1



n = 2



N > 3

Simplicial Complexes

A (geometric) Simplicial Complex is a finite

collection of simplices $X = \{\sigma_i\}_{i=1}^N$

w/ even of EIR" satisfying

- (a) Y o \(\chi\), all faces of o are in \(\chi\).
- (b) $\forall \sigma, \tau \in X$, $\sigma \cap \tau$ is also a simplex which is a face of both σ and τ .

Remarks.

- . we frequently conflate me collection & its union.
- · Intuitively, X is a set obtained from gluing together simplices along faces.

Ex: Geometric realization of a graph.

Ex:

BADEX:

Triangulate

GOODEX:

An abstract simplicial complex is