CER gruenbry
$$\tilde{g}([a_ib])$$
 where \tilde{g} precesse c' .

 $f: S \rightarrow \mathbb{R}$ CESER*

$$\int_{c}^{b} f \, ds \stackrel{\text{def}}{=} \int_{a}^{b} f(\tilde{g}(t)) |\tilde{g}'(t)| \, dt$$

$$\int_{c}^{d} 1 \, ds = L(c) \qquad (a)$$
(a) es not depend on parametrization)

Definition a Reparametrication of C is $\lambda: [C, 0] \rightarrow (a, b)$ 1-1, onto, C' and $\vec{h}(u) = \vec{g}(x(u))$

Proposition
$$\int_{c}^{c} f ds$$
 is invariant under reparametrization. i.e. $\int_{c}^{c} f(\bar{h}(\omega)) |\bar{h}'(\omega)| d\omega = \int_{c}^{c} f(\bar{g}(t)) |\bar{g}'(t)| dt$

Proof

(i) λ is order preserving (increasing), ie \vec{j} , \vec{h} specify same direction along curve. $\vec{k}'(u) = \vec{q}'(\lambda(u))\lambda'(u)$ and λ' nonnegative $|\vec{k}'(u)| = |q'(\lambda(u))|\lambda'(u)$ $|\vec{k}'(u)| = |q'(\lambda(u))|\lambda'(u)$

$$\int_{C} f(\bar{h}(u)) |\bar{h}'(u)| du = \int_{C} f(\bar{q}(x(u))) |\bar{q}'(x(u))| \chi'(u) du$$

$$= \int_{C} f(\bar{q}(e)) |\bar{q}'(t)| dt \qquad u$$

= $\int_{r}^{3} f(\vec{g}(t)) |\vec{g}'(t)| dt$ where $t = \lambda(\omega)$ $dt = \lambda'(\omega) d\omega$

(2) I is order reversing (decreasing).

Page 1

Same as above but is nonpositive so we have (-)(u1)
Most cad. Then the integral is just the my atmosf
what it is otherwise, but the bounds are
flipped so we my ate it again, so it's invariant.

Lhe integrals over vector fields

 $C \subseteq \mathbb{R}^n$ your by $\vec{g}(Cq, \omega)$ with \vec{g} piecewise C'. $F: U \to \mathbb{R}^n$ $C \subseteq U \subseteq \mathbb{R}^n$

 $\int_{C} \vec{F} \cdot d\vec{j} = \int_{C} \vec{F} (\vec{j}(t)) \cdot \vec{g}'(t) dt \qquad (|| lnt || lnt || eym|)$

F: force field. i.e. gravity, electric field.

F(x) = force at x.

Simplest case: Motion along a straight line $\vec{a}\vec{b}$.

Force is constant, in dir. of motion.

W= |F| | \vec{b} - \vec{a} | - dist. moved.

W- 1111b- al - dist. moved

Muy nitude of force

Next simplest case: motion along a straight line $\vec{a}\vec{b}$ Force is constant at angle $\vec{0}$ to motion. $W = (|\vec{F}|\cos(0))|\vec{b} - \vec{a}| = \vec{F} \cdot (\vec{b} - \vec{a})$ Component of force in J.r. of motion.

General Case: motion along curve C= g((a,b))

\(\vec{\mathcal{F}} : \mathcal{W} \rightarrow \vec{\mathcal{R}}^n \) arbitrary.

Partition (a,b) into small subintervals

$$\vec{F} \cdot d\vec{g} = F_{tangoritinids}$$
 where $f_{tang} = \vec{F} \cdot \frac{\vec{J}'(t)}{|\vec{J}'(t)|}$

$$ds = |\vec{q}'(t)| dt$$

- (1) it I increasing them Frang does not change
- (2) If λ decreessing (reverses direction) then F_{tang} changes to $-F_{tang}$ SO $\int_{C} \vec{F} \cdot I\vec{h} = -\int_{C} \vec{F} \cdot d\vec{g}$

Notation: - C denotes C reparametrized by an order reversal.

Green's Theorem (in R2)

Jordan Curve theorem:

Definition we say that $g: (a_1b_3 \longrightarrow |R^n|^2 is a simple closed curve if <math>g: (a_1b) \longrightarrow (a_1b)$ and g(a) = g(b).

If $\vec{g}: [a_1b] \to \mathbb{R}^2$ is a simple closed curve, then open transmeters $\mathbb{R}^2 \setminus \vec{g}((a_1b3)) = ULIV \quad \text{where one is bounded, the other unbounded.}$ Is interior of L be exterior if L

(A realow / subset of R2 is enclosed by disjoint simple closed corner

A region / subset of \mathbb{R}^2 is enclosed by disjoint simple closed corner, if $C_1, C_2, ..., C_k \subseteq \text{Interior of } C_0$ R closed and $\mathbb{R} \setminus \partial \mathbb{R} = (\text{interior of } C_0) \cap \bigcap_{i=1}^{K} (\text{exterior of } C_i)$ C.

Over's Thorens

Suppose $R \subseteq R^2$ is closed a metosed by a finite num of simple closed curves $C_0, ..., C_K$ which are vicewise C' and $\vec{F} = (P,Q): U \to R^2$ defined on $U \supseteq R$. Then $\iint \left(\frac{2Q}{2X} - \frac{2P}{2Y}\right) dA = \sum_{j=1}^K \int_{C_K}^{\vec{F} \cdot d\vec{S}_j} c_K$

where Co is ariented cow and Ciping in oriented cw.