Monday, February 6, 2017 09:11

Impli Cit functions:

$$\begin{array}{l}
F_{1}(\chi_{1,...},\chi_{n_{1}},y_{1,...},y_{m}) = 0 \\
F_{2}(\chi_{1,...},\chi_{n_{1}},y_{1,...},y_{m}) = 0 \\
\vdots \\
F_{m}(\chi_{1,...},\chi_{n_{1}},y_{1,...},y_{m}) = 0
\end{array}$$

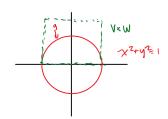
$$\overrightarrow{F}(\overrightarrow{\chi},\overrightarrow{y}) = \overrightarrow{o}.$$

Definition Suppose $U \subseteq \mathbb{R}^{m+n}$ open, $\widehat{F}: U \longrightarrow \mathbb{R}^m$ differentiable. We say that $\widehat{g}: V \longrightarrow W$ is an implicit function defined by $\widehat{F}(\widehat{X},\widehat{y}) = \widehat{\sigma}$ if: 1) $V \subseteq \mathbb{R}^n$, $W \subseteq \mathbb{R}^m$ open

- 2) V×W = U
- 3) if $(\vec{x}, \vec{y}) \in V_{XW}$ from $\vec{F}(\vec{x}, \vec{y}) = \vec{o} \iff \vec{y} = \vec{g}(\vec{x})$
- \vec{x}) $\{(\vec{x},\vec{y}) \mid \vec{F}(\vec{x},\vec{y}) = \vec{\sigma}\} \cap (V \cap W) = \{(\vec{x},\vec{y}) \mid \vec{x} \in V\}$

Example: $J(x)=\sqrt{1-x^2}$, $g:(-1,1) \rightarrow (0,2)$

implicit function defined by x2+y2=1



Want to express jacobran Dg interns of DF.

Notation: \vec{C} some diffable function defined on some open subset contained in \vec{R} and takey values in \vec{R} $\vec{v} = \vec{C}(\vec{u})$, $\vec{D}\vec{G}(\vec{u}) = \frac{3\vec{C}}{3u} = \frac{3(G_1,...,G_p)}{3(u_1,...,u_q)} = (\gamma_i G_i)_{1 \le i \le p}$

let
$$\vec{\lambda}: V \rightarrow u$$
 be defined to be $\vec{\lambda}(\vec{x}) = (\vec{x}, q(\vec{x}))$

$$(\vec{F} \cdot \vec{\lambda})(\vec{x}) = \vec{F}(\vec{x}, \vec{q}(\vec{x})) = 0$$
 for all $\vec{\chi} \in V$.

$$\Rightarrow \left(\frac{2\vec{F}}{2\vec{Y}}\right)\left(\frac{2\vec{q}}{2\vec{X}}\right) = \left(\frac{2\vec{F}}{2\vec{X}}\right)$$

$$|\nabla \vec{q}| |\nabla \vec{x}| |\nabla \vec{x}|$$

$$|\nabla \vec{q}| |\nabla \vec{x}| = |\nabla \vec{q}| |\nabla \vec{x}| = -|\nabla \vec{q}| |\nabla \vec{x}| |\nabla \vec{x}|$$
There are evaluated at $|\nabla \vec{x}| = |\nabla \vec{q}| |\nabla \vec{x}|$

1 hodotuis, det
$$\left(\frac{2\bar{F}}{2\bar{q}}(\bar{\chi},\bar{q}(\bar{\chi}))\right)$$
 must $\neq 0$ for all $\bar{\chi} \in V$.

82.5 #4.

$$u = \chi^2 + 3y^2 \qquad y - \chi_2 = 0$$

1) compute
$$\frac{3u}{2x}$$
 assuming that (x,y) independent, z dependent.

Write out as composite:

$$u = V^2 + 3w^2$$
 $V = Y, w = Y$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial V} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial w} \frac{\partial w}{\partial x}$$

$$= 2v \frac{\partial v}{\partial x} + 6w \frac{\partial w}{\partial x}$$

$$= 2x \frac{\partial v}{\partial x} + 6y \frac{\partial w}{\partial x}$$

in
$$\hat{D}$$
, this is $2 \times \frac{2x}{2x} + 6y \frac{2y}{2x} = 2x$

2), this is
$$2 \times \frac{3x}{3x} + 6y \frac{3y}{3x} = 2x + 6y^2$$

$$F(x,z,y) = y - xz = 0$$

$$\frac{\partial y}{\partial x} = -\frac{\partial F}{\partial x} / \frac{\partial F}{\partial y} = -\frac{-2}{1} = 7$$

Taylor polynomials: (of order m)

$$f\colon \stackrel{\text{opm}}{U} \stackrel{\mathbb{R}^n}{\longrightarrow} \mathbb{R} \ . \qquad \qquad f \quad \text{is of class} \quad \mathbb{C}^m.$$

two forms:

Unsorted Taylor polynomial of order m.

Sorted form:

$$f(\vec{a} + \vec{h}) \approx \sum_{|\alpha| \leq m} \frac{j^{\alpha} f(\vec{a})}{|\alpha|} h^{\alpha}$$

$$\vec{A} = (x_1, \dots, x_n)$$