Friday, February 17, 2017 09:12

Spectral theorem for Quadratic Forms.

A symmetric nxn matrix.

$$Q_A: \mathbb{R}^n \to \mathbb{R}$$
, $Q_A(\vec{\chi}) = \sum_{i,j=1}^n a_{ij} \chi_i \chi_j$

Theorem (spectral theorem): There are n nutually perpendicular unit vectors $\vec{u}_{i,...,\vec{u}_n}$ Such that $Q_{A}(\vec{x}) = \sum_{i=1}^{n} \lambda_i (\vec{x} \cdot \vec{u}_i)^2$ and λ_i are eigenvalues of A_i , given by solving

 $(P(1) = det(A - \lambda I) = 0$ for λ and \vec{u}_i are eigenvectors so $Au_i = \lambda_i u_i$.

Notation: $\vec{x} \cdot \vec{y} = \vec{x}^t + \vec{y}$

Ct is transpose of C = interchange rows w/ wlumas.

 $(C \times D)^t = D^t \times C^t$

 $Q_{\Delta}(\vec{x}) = \vec{x} \cdot A \vec{x} = \vec{x}^{t} * A * \vec{x}$

 $\beta_{\lambda}(\vec{x},\vec{y}) = \sum_{i=1}^{n} \alpha_{ij} x_{i} y_{i}$

 $\begin{array}{lll} B_A & \text{bilinew product} & B_A: \ \mathbb{R}^{2n} \rightarrow \mathbb{R} \ , \ B_A(\vec{x},\vec{y}) = \vec{x} \cdot A \vec{y} = \vec{x}^t * A * \vec{y} \\ N_0 + e \ B_A(\vec{y},\vec{x}) = \vec{y}^t * A * \vec{x} = \vec{y}^t * A^t * \vec{x} = (\vec{x}^t * A * \vec{y})^t = \vec{x} \cdot A \vec{y} = \vec{g}(\vec{x},\vec{y}). \end{array}$

it is a nonempty subset of R" and if

Definition V is a linear subspace of \mathbb{R}^n if $\forall \vec{x}, \vec{y} \in V$, $\vec{x} + \vec{y} \in V$ and $\forall \alpha \in \mathbb{R}$, $\alpha \vec{x} \in V$ Note these imply $\vec{o} \in V$. Note linear subspaces are closed subsets: If W subset of \mathbb{R}^n , $W^\perp = \bigcap_{\vec{w} \in W} \{\vec{v} \in \mathbb{R}^n : \vec{v} \cdot \vec{w} = 0\}$ and $V^{\perp \perp} = V$.

Main Lemma: Let V be a linear subspace of Rⁿ such that $A(V) \subseteq V$. Let $\vec{u} \in V \cap S^{n-1}$ S.t. $Q_A(\vec{u})$ is maximal over $V \cap S^{n-1}$ Then

(a) w ∈ V & w · û = 0 ⇒ û · A v = 0

(b) Aū = λū for some λ∈ R.

Proof of lemma: for any O, take V= 10. CoS(O) \(\vec{u} + Sin(6) \(\vec{v} \) ∈ V \(\rangle S^{n'} \). This is because

Page 1

Proof of spectral theorem:

Inductively Define a decreasing sequence of linear subspaces $V_1 \supseteq V_2 \supseteq V_3 \supseteq ... \supseteq V_n$ and elements $\vec{K}_i \in V_i$ satisfying hypothesis of main lemm; $A(V_i) \subseteq V_i$ and $Q_A(\vec{u}_i)$, is maximal on $V_i \cap S^{n-1}$.

Start by defining $V_i = \mathbb{R}^n$, $Q_A(\vec{u})$ maximal on S^{n-1} . Having defined V_{i+1} let $V_{i+1} = \{\vec{v} \in V_i : \vec{v} \cdot \vec{u}_i = 0\} = \{\vec{u}_i\}^{\perp} \cap v_i$.

then by part (a) of the main leman, we have $A(V_{i+1}) \subseteq V_{i+1}$.

let Q4 (uiti) be maximal on Vi+1 ΩS^{n-1} . dim Vi+1 = dim Vi -1.

 \Rightarrow dim $V_i = n+1-i$. \Rightarrow dim $V_N = 1$.

Then {ti, ..., tin } are mutually perpendent unit vectors sothery form a basis of Rn. Also by part (b) of manin lemma, we have Au; = liu; for i=1...,n

So if
$$\vec{x} \in \mathbb{R}^n$$
 then $\vec{x} = \sum_{i=1}^n \vec{x}_i \cdot \vec{u}_i \Rightarrow \vec{u}_j \cdot \vec{x} = \vec{x}_j$.

$$Q_A(\vec{x}) = \vec{x} \cdot A \vec{x} = \left(\sum_{i=1}^n (\vec{u}_i \cdot \vec{x}_i) \vec{u}_i\right) \cdot A\left(\sum_{i=1}^n (\vec{u}_i \cdot \vec{x}_i) \vec{u}_i\right) \\
= \left(\sum_{i=1}^n (\vec{u}_i \cdot \vec{x}_i) \vec{u}_i\right) \cdot \left(\sum_{i=1}^n (\vec{u}_i \cdot \vec{x}_i) \lambda_j \vec{u}_j\right) \\
= \sum_{i,j=1}^n \left(\vec{u}_i \cdot \vec{x}_i\right) \left(\vec{u}_j \cdot \vec{x}_i\right) \lambda_j \left(\vec{u}_i \cdot \vec{u}_j\right) \\
= \sum_{i=1}^n \lambda_j \left(\vec{u}_j \cdot \vec{x}_i\right)$$