Lec 1/25 Wednesday, January 25, 2017 09:03

Connectedness.

Definition A separation of a topological space
$$(X, T)$$
 is a pair of
nonempty open sets (U, V) such that $X = U \cup V$ and $U \cap V = \emptyset$.
We say X is disconnected if there is a separation and connected
if there is no separation.

Remarks:
$$U = X \setminus V$$
 is closed, so is V (in X). We could also say "closed" in Definition
A subset $A \leq X$ is clopen if it is both closed & open.
if $A \neq \emptyset$, $A \neq X$, then $X = A \cup (X \setminus A)$.
X connected \iff the only clopen sets are \emptyset and X .

Definition Let
$$A \leq (X, T)$$
 (X not necessarily connected). A is a connected
Subset of X if $(A, T_A = \Sigma U_A : U \in T_S)$ is connected.
 \iff If $A \leq U_UV$, U, V open in X, $A_0U_0V = \emptyset$.
Then either $A_0U = \emptyset$ or $A_0V = \emptyset$

囫

Definition Let (X, T) be a topological space,
$$x \neq y \in X$$
. A connectivity
charin from $x \neq y$ in X is a finite sequence $\xi C_i 3_{i=0}^n$
of connected subsets such that $x \in C_0$, $y \in C_h$, $C_{i-1} \cap C_i \neq \beta$.

Corellary the only connected subsets of R are: 1) \$ 2) \$(3) 3) any kind of interval. (spm, closed, fin it x, i'rf. hite, etc.).

Proof 1) is trivial 2) any disc. set means atleast zyts.
3)
$$(a_1b_3)$$
 already done
 $[a_1\infty) = \bigcup_{n=cell(a)+1}^{n}$ these are connectivity chains.
 $(a_1\infty) = \bigcup_{n=cell(a)+2}^{n} [a_{n+1}, n]$
 $etc.$
 $conversely, if A is not one of these through, Canfind CERAs.t
 $(-\infty, c) \cap A \neq \beta$ and $(c, \infty) \cap A \neq \beta$. so $(A_0(-\infty, c), A_0(c, \infty))$ is a separation.
Perevalization of Intermediate Value theorem.$

Meaner Suppose
$$f: (X, \gamma) \rightarrow (Y, \gamma)$$
 is continuous and onto.
Suppose X is connected. then Y is connected.
Proof: by contradiction. Suppose Y is not connected. Then

There is a separation
$$Y = U \sqcup V$$
. It follows that $X = f'(u) \sqcup f'(v)$
is a separation of X.

$$\frac{P_{00}}{1} \text{ If } f:(X, T_i) \rightarrow (Y, T_i) \text{ is continuous } A X \text{ is connected, so is } f(X).$$

$$\frac{P_{00}}{1} \text{ frestricted to } f | :(X, T_i) \rightarrow (f(X), T_{2,f(X)})$$

Corollary If f: (X, T) -> IR is continuous, X is connected, turn f(X) is either a point or an interval.

Definition A (normalized) path from x to y in a topological space (x, 7) is a continuous function $f: [0,1] \rightarrow X$ s.t. f(0) = x, f(1)

$$f(0) = x, f(1) = y$$

A space is path connected, if there is a path between any two points

Theorems if
$$(X, \gamma)$$
 is path connected, it is connected.
Proof take $\{f(to, ij)\}$ as the connectivity chain between x and y.
Where f is a normalized path botwn x andy.