Lec 1/20

Friday, January 20, 2017 09:05

Theorem Sin notes Let
$$S \subseteq \mathbb{R}^n$$
 $f: S \to \mathbb{R}$. Then following statements are equiv:
(i) $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = L$
(2) \vec{a} is an interior point of $S \cup \vec{z}\vec{a}\vec{s}$ and $\vec{f} \in \mathbb{R}$
for any path $\vec{y}: [0,1] \to S \cup \vec{z}\vec{a}\vec{s}$ s.t. $\vec{y}^{-1}(\vec{a}) = 0$, we have $f \cdot \vec{r}: [0,1] \to \mathbb{R}$
and $\lim_{t \to 0^+} (f \circ \vec{r})(t) = L$.

This is typically used to show
$$\lim_{X\to a} f(\bar{x})$$
 does not exist.
(i.e. find two paths \vec{Y}_1 and \vec{y}_2 : $[0, 1] \longrightarrow$ Suzaz satisfying (2)
and show that $\lim_{X\to 0^+} (f \circ \bar{Y}_1)(t) \neq \lim_{X\to 0^+} (f \circ \bar{Y}_2)(t)$.

Example:
$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{if } x \neq 0. \\ 0 & \text{if } x = 0. \end{cases}$$

Show
$$\lim_{(x,y)\to(0,0)} f(x,y) \text{ DNE.}$$

 $(x,y)\to(0,0)$
 $\vec{Y}_1(t) = (0,t)$
 $\vec{Y}_2(t) = (t^2,t)$
 $\lim_{t\to 0^+} (f \circ \vec{Y}_2)(t) = 0$
 $\lim_{t\to 0^+} \frac{t^3}{t^4 + t^2} = \lim_{t\to 0^+} \frac{c}{2^4t} = \infty$

Weak notion of limit
Definition 8
$$T \subseteq \mathbb{R}^n$$
 $f: T \rightarrow \mathbb{R}$ $[S \subseteq T, \vec{a} \in \partial(S \setminus \{a\})]$. We define

$$\lim_{\vec{x} \to \vec{a}, \vec{x} \in S} f(\vec{x}) = c \quad \text{to mean that } \forall \{z \neq a\}, \exists s > 0 \quad \text{Such that}$$

$$0 \leq |\vec{x} - \vec{a}| \leq \delta \quad \text{(no } \vec{x} \in S \implies |f(\vec{x}) - c| \leq \epsilon.$$

(compapable to 1-sided limits of 1-var calculos: [im = 1im, etc.)

Another notion of limit: iterated single variable limits. (consider n=2) lim lim f(x,y) = L menns fix y at some value 76, take limit of X, mentake limit of y. y=6 x=n

Precise Definition 10:
$$\lim_{y \to b} x \to a$$

y satisfying $o < |y - b| < \delta$, we can find a $\delta_y > 0$ s.t. for any
 χ satisfying $o < |\chi - a| < \delta_y$, $o < |y - b| < \delta$, we have $(\chi_1y) \in dom(t)$
and $|f(\chi_1y) - L| < \xi$.

Theorem: if
$$f(x,y) = L$$
 then $f(x,y) = L$.
 $(x,y) \rightarrow (a,b)$
if $f(x,y) \rightarrow (a,b)$
if $f(x,y) = L$.
 $y \rightarrow b = x \rightarrow a$
 $f(x,y) = L$.
 $(x,y) \rightarrow (x,b)$
 $f(x,y) = L$.
 $(x,y) \rightarrow (x,b)$
 $f(x,y) = L$.
 $(x,y) \rightarrow (x,b)$
 $(x,y) \rightarrow (x,b)$
 $(x,y) \rightarrow (x,b)$

Proof: Use the box norm in definition of limit. Given E>0, find S>0 Sit. $o < |(x,y) - (x,b)| < S' \implies (x,y) \in \partial on(\epsilon) \iff |f(x,y) - L| < \epsilon_{-}$ then take $S = S_y = S'$

Example
$$f(x,y) = \frac{x^4}{y^4 - x^2} = \frac{x^4}{(y^2 - x)(y^2 + x)}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \end{array} DNE. \qquad bot \qquad lim \qquad lim \qquad f(x,y) = 0. \\ y \geqslant 0 \qquad x \geqslant 0 \\ x \Rightarrow 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \end{array} \\ x \Rightarrow 0 \qquad y \geqslant 0 \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \geqslant 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \Rightarrow 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \Rightarrow 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \Rightarrow 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \Rightarrow 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \Rightarrow 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \Rightarrow 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ x \Rightarrow 0 \qquad y \Rightarrow 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x,y) \rightarrow (x,y) \\ (x \rightarrow 0 \qquad y \Rightarrow 0 \end{array}$$

$$\begin{array}{c} 1.16 \\ (x \rightarrow 0 \qquad y \Rightarrow 0 \end{array}$$

(1) S is a compact set

$$P_{\underline{oof}}: (1) \Rightarrow (2); \quad \mathbb{R}^{n} \text{ Hausdorff} \Rightarrow S \text{ is closed in } \mathbb{R}^{n} \text{ also,}$$

$$S \in \mathbb{R}^{n} = \bigcup_{n=1}^{\infty} B(n; \vec{o}). \quad Since S \text{ compact, there is a finite}$$

$$Subcover \quad \tilde{Z} B(n; \vec{o}) Z_{l=1}^{k} \text{ Then } S \subseteq B(\max\{n; \vec{S}_{l=1}^{n}, \vec{o}\} \text{ so } S \text{ is boundel.}$$

$$(2) \Rightarrow (1): \quad \text{Recall some distinguishing properties of } \mathbb{R}:$$

(b) any subset SER which is bounded above has a least upper bound.

1

(c) similarly for g.l.b.

(d) nested intervals property & R has no infinitesimals. (lim
$$\frac{1}{n} = 0$$
).
($J_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$, $I_j = (a_j, b_j)$, $\lim_{j \to \infty} b_j - a_j = 0$, $\lim_{j \to \infty} I_j = 2c_j^2$ singleton.

$$\begin{split} & \text{NIP} \Rightarrow \text{Nexted Boxes Property: let } B_1 \geq B_2 \geq \dots \text{ be boxes in } \mathbb{R}^n, \\ & B_m \equiv [a_{m_1}, b_{m_1}] \times \dots \times [a_{m_n}, b_{m_n}], \quad \text{and } \lim_{m \to \infty} (b_{m_j} - a_{m_j}) = 0 \quad \forall j \in \{1, \dots, n\} \\ & \text{then } \bigcap_{m \geq 1}^{\infty} B_m = \tilde{z}\tilde{c}\tilde{s} \text{ singleton.} \end{split}$$