$$|\dot{\mathbf{m}} \quad f(\vec{\mathbf{x}}) = \mathbf{L}$$

$$\vec{\mathbf{x}} \rightarrow \vec{\mathbf{a}}$$

n=1 "Definition: lim
$$f(x)=L$$
 if $\forall \epsilon>0$, $\exists \epsilon>0$ s.e. $a(x-a)<5 \Rightarrow |f(x)-f(a)|<6$
 $\times \Rightarrow a$

Cood interpretation: (*) means that $o(|x-a| < \delta \Rightarrow \chi \in dom(f) & |f(x)-f(a)| < \xi$ Bad interpretation: (*) means that $o(|x-a| < \delta + \chi \in dom(f) \Rightarrow |f(x)-f(a)| < \xi$ Ly lim $\pi = \pi$. (Vaevously true), $\chi > -1$

less bad interp: Assume $a \in \partial$ (tom (+)\{a3}). then $\forall \delta > 0$, $\{x | o < |x - a| < \delta\} \cap i \circ m(f) \neq \emptyset$ wy this: $\lim_{x \to 0} \int_{\mathbb{R}^2} \int_{\mathbb{R}$

"(ounterkample" to L'Hôpital's rule: for $x \neq 0$, let $f(x) = \frac{x}{24 \times \sin(\frac{x}{2})}$ $g(x) = f(x) e^{-\sin(\frac{x}{2})}$

Thun $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x)$ but $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} e^{-\sin(\frac{t}{x})}$ does not exist.

 $f'(x) = \chi(x) \cos(\frac{1}{x})$ $g'(x) = \beta(x) \cos(\frac{1}{x})$ for some $\chi, \beta : (-\infty, 0) \cup (0, \infty) \to \mathbb{R}$.

 $\lim_{x \to 0} \frac{x(x)}{p(x)} = 0.$ $\lim_{x \to 0} \frac{f'(x)}{f'(x)} = \lim_{x \to 0} \frac{x(x)\cos(\frac{1}{x})}{p(x)\cos(\frac{1}{x})} = \lim_{x \to 0} \frac{x(x)}{p(x)\cos(\frac{1}{x})} = 0$ $\lim_{x \to 0} \frac{x(x)}{f'(x)} = \lim_{x \to 0} \frac{x(x)\cos(\frac{1}{x})}{p(x)\cos(\frac{1}{x})} = 0$

"Spiral(" definition (bad), f is continuous at a if $\lim_{x\to a} f(x) = f(a)$. c quiv. to saying $\forall £70 \exists 570 \text{ s.t. } |x-a| < 8 \Rightarrow x \in \text{dom}(f) \text{ is not } cts \text{ at } 0$.

Extreme value thm: if f(x) cts on [a, b] (closed) than fatterns a mext min on (a, b). (does not apply to \sqrt{x} on [0, 1]).

Theorem $\lim_{x\to a} f(x) = f(a) \Leftrightarrow f define on open interval = a & f cts.$

Page 1

In R" wen more necessary to be careful a bout dets.

 $\eta=2$. Suppose $f(a_1b)=o=g(a_1b)$. Can we make cause of $\lim_{(x,y)\to(a_1b)}\frac{f(x,y)}{g(x,y)}$? usually not.

Typically, f(x,y) = 0, g(x,y) = 0 define curves in the plane.

Mear the cone g(x,y)=0, the quotient blows up on the cone f(x,y)=0, the quotient is 0.

Good Definition: (SER", h: S-R). I'm h(\vec{x}) = L if $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $6 < |\vec{\chi} - \vec{\alpha}| < \delta \Rightarrow \chi \in S \text{ and } |h(x) - L| < \epsilon.$

Remark: This automatically excludes most limits of the type in $\frac{f(\vec{z})}{\vec{z} = \vec{a}}$ where f,g are Communications with $f(\vec{a}) = 0 = g(\vec{a})$:

 $\lim_{\vec{x} \to \vec{a}} \frac{f(\vec{x})^{\frac{1}{2} - h(\vec{x})}}{g(\vec{x})} = L \text{ requires that } \exists s > 0 \text{ s.t.}$

 $0 < |\vec{x} - \vec{a}| < \xi \Rightarrow \vec{x} \in dom(\vec{h}) \Rightarrow g(\vec{x}) \neq 0.$

lim h(x)=L is equivalent to the following: \ sequence {\$\vec{7}{n}} 3_{n=1}^{\infty} in dom(h)\{a} and with $\lim_{n\to\infty} \vec{\chi}_n = \alpha$, we have $\lim_{n\to\infty} h(\vec{\chi}_n) = L$. (h is defined on some $B(\delta, a) \setminus \{a\}$)

Proof: >: let E>0 be given. Then find \$>0 s.t. 0< |x-a|<8 => = = 600m(h) & |h(x)-L|<8 if $\lim_{n\to\infty} \overline{x}_n = \overline{a}$, then for some N, $n>N \Rightarrow (|\overline{x}_n - \overline{a}| < S \Rightarrow \overline{x} \in \partial_0 m(h) \cdot 2 | h(\overline{x}) - L| < \varepsilon$ < : If not the then for some € >0 and any 1 < 8, Lan find \$\frac{1}{2} \cdot B(\frac{1}{10}, a) and \land \land (\frac{1}{10} \cdot L) > € So like $\widetilde{\chi}_h = \alpha$ but like $k(\overline{\chi}_h) \neq L$.

lim $h(\vec{x}) = L \iff h$ is defined on some $B(s, a) \setminus \{a\}$ and for any continuou, $\vec{x} \Rightarrow \vec{a}$ Path $\vec{Y}: [0,1] \rightarrow \text{dom}(h)$ with $\vec{Y}(0) = \vec{a}$, we have $\lim_{t \to 0} h(\vec{Y}(t)) = L$.