Definition: let (X, d) be a metric space ((X, T) a tapological space) an open cover of X is a collection of open sets EVa3 s.t X=Ula. A subcover is a cohection {UB3={Ua} which is also an open cover of X.

X is compact if any open cover of X was a finite subcover.

Any finite metric/topological space is compact since the powerset

Nonexample: $\mathbb{R}^n : \mathbb{R}^n = U_{m=1}^\infty B(m,\delta)$ but is there were a finite subcorer, $\mathbb{R}^n \subseteq B(m,\infty,\delta)$. (0,1): {(\frac{1}{m},1)} 3 = 13 = n open cover w/ no finite subcover. (same situation as a bove).

Definition let (X, T) be a topological space (not necessarily compact) and let A S X. We say A is a compact subset of X if (A, 7) (subspace topology) is a compact topological space (7={una | ue7}).

Definitions let X be a topological metriz space, let AEX. We say that a collection of open sets {U_3 in X is an open cover of A in X if A = Uua. We say {Up3 = {U2} is a subcolor if A = Uup

Proposition! A is a compact subset of X iff any open cover of A inx has a f.hite kubcover,

 $A \subseteq Uu_{\alpha} \iff A = (Uu_{\alpha}) \cap A$ $A \subseteq \bigcup_{i=1}^{n} u_{\alpha_i} \iff A = (\bigcup_{i=1}^{n} u_{\alpha_i}) \cap A$

Kennark Compactness is an a bsolute property (not relative to enclosing space, just ropology)

if $A \subseteq X$, (for/met space) $A \subseteq Y$,

& the Subspace topologies on A coincide, then A compact in $X \iff A$ compact in Y

Proposition: Suppose (X, T) is a compact top. space. Let A \(\infty) \) is a compact top. space. Let A \(\infty) \in \) be closed. Then A is compact.

Proof: SUPPOSE $\frac{1}{2}$ Ua $\frac{1}{2}$ an open cover of A in X ($A \leq Uu_a$). Then X = AU ($X \setminus A$) $\subseteq (Uu_a) \cup (X \setminus A) \subseteq X$, this means $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ is an open cover of X. So there is a finite subcover $X = \bigcup_{i=1}^{n} U_{\alpha_i} \cup (X \setminus A)$. $A \leq \bigcup_{i=1}^{n} U_{\alpha_i}$ since $A \cap (X \setminus A) = \phi$.

is the converse true? i.e. if $A \subseteq X$ compact subset of X is A closed? No: Example: Any finite top space: $X = \{1,2\}$ $T = \{4, X, \{13\}\}$.

Need additional property:

Definition we say that a topological space (X,T) is Hausdorff if for any two distinct points $a,b\in X$, $a\neq b$, we can find two open sets $u,v\in T$ s.t. $a\in u$, $b\in V$, $u\cap V=\emptyset$,

Proposition. Any metr & space is Hausdorff.

Proof: take balls by radius $\frac{\partial(b,a)}{2}$: $U = B(\frac{\partial(b,a)}{2},a)$ $V = B(\frac{\partial(b,a)}{2},b)$ $V = B(\frac{\partial(b,a)}{2},b)$ $V = B(\frac{\partial(b,a)}{2},b)$ $V = B(\frac{\partial(b,a)}{2},b)$ $V = B(\frac{\partial(b,a)}{2},b)$

Theorem: (e+ (X, T) be a topological space. Let $A \subseteq X$ be a compact subset. then A is closed in X.

Proof: A closed in $X \Leftrightarrow X \land A$ is open in X.

Let $b \in X \land A$. We want to show to is an interior profix a in X.

for each $a \in A$, pick open sets $U_a = a \lor V_a$, be $V_a = a \lor V_a \lor V_a \lor V_a = a \lor V_a \lor V_a = a \lor V_a \lor V_a \lor V_a = a \lor V_a \lor V_a \lor V_a \lor V_a = a \lor V_a \lor V$

Theorem (Hane-Borel) A is a compact subset of (R, d)

A is a losed & bounded.

Note: this is not true if we take a metric on Rh which is equiv. to the usual one.

Exercise (whes): if (x,d) any metric spece then $\tilde{\partial}(x,y) = \frac{\partial(x,y)}{\partial x_1}$. It doesn't have have is an equivalent metric (not strongly). If $\tilde{\partial}(x,y) < 1$ then $\tilde{\partial}(x,y$