Lec 1/17

Tuesday, January 17, 2017 09:13

$$\#W: \subseteq_{\underline{N}} (\underline{x}\underline{y})$$

Holdy fixed:
$$\lim_{x\to 0} \frac{\sin(xy)}{x} = \lim_{x\to 0} \frac{\sin(xy)}{xy} y$$

$$= \lim_{x\to 0} \frac{\sin(xy)}{x} = \lim_{x\to 0} \frac{\sin(xy)}{xy} y$$

$$= \lim_{x\to 0} \frac{\sin(xy)}{x} = 1$$

Theorem $\vec{f}: (X, d) \rightarrow \mathbb{R}^n$ is continuous iff f_1, \dots, f_n are continuous

Prof: \Rightarrow : for is the composite $(X, J) \rightarrow \mathbb{R}^n \rightarrow \mathbb{R}$

so fi is us if f is cts.

€: suppose f; is cts tie{1,..., n}.

to show that \vec{f} is cts, it suffices to show that $\vec{f}^{-1}(open ball)$ is open in (x, δ) .

Use box metric on \mathbb{R}^n . $B_{\infty}(r,a) = (a_r,a,tr) \times \cdots \times (a_n-r,a_n+r)$

$$\vec{f}'(B_{\infty}(r,\vec{a})) = \vec{f}'((a,-r,a,+r)) \cap \cdots \cap \vec{f}'((a,-r,a,+r))$$

$$(open) \cap \cdots \cap (open) \quad (fivite intersection)$$

Problem 1, §1.2.

(b).
$$S = \frac{5}{2} (x_{1}y) | x^{2} + x \leq y \leq 0$$
 is a closed subset of \mathbb{R}^{2} .

Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 $f(x,y) = x^2 - x - y$
 $\pi_2: \mathbb{R}^2 \to \mathbb{R}$ $\pi_2(x,y) = y$.

= (No 84).

Definition: suppose (x_{id}) is a metric space, at x_{in} , x_{in} , sequence in x_{in} .

Then we shythat $\lim_{n\to\infty} x_{in} = a$ if $\lim_{n\to\infty} d(x_{in}, a) = 0$.

for any 4>0, $x_{in} \in \mathbb{B}(2,a)$ for all $n \ge N$.

limits are unique in metric spaces but not necessarily in topological spaces.

Proof by contradiction: Suppose that $\lim_{n \to \infty} x_n = a$ and $\lim_{n \to \infty} x_n = b \neq a$. $d(a,b) \leq d(a,x_n) + d(x_n,b)$ Contradiction.

fixed positive a on a limit.

Proposition let $\{x_m\}_{n=1}^{\infty}$ be a sequence in a metric space (x, 0).

then $\lim_{n\to\infty} x_m = a$ iff \forall reignborhood N of a, we can find an index M $\exists .t$. $X_m \in N$ when $m \ni M$.

tooling limits of sequences we the same for equivalent medics.

Corollary lim $\vec{x}_m = \vec{a}$ in \vec{R} iff $\vec{l}_i m \times \vec{m}_i = \vec{a}_i$ in \vec{R} $\vec{V}_i \in \{1, ..., n\}$.

Proof: use box metric in Rn

Proof: 3: Suppose A is a losed and let lim am & A so it's EXIA.

Then lim am is a boundary point of A in X which is not in A.

(Since any open ball contains am EA and lim am &A.) Contradiction.

Especie that Ean's convergent sequence in A = lim am EA.

Ned to show A is closed in X. A DASA

Suppose be DA. Then Y positive integers my Three is an am EB (m, b)

then like an = 6 SO bEA SO JAGA.

Proposition. $f: (x, d_1) \rightarrow (x, d_2)$ is continuous at $a \in A$ iff \forall sequence $\{a_m\} \in X$ s.t. $\lim_{m \to \infty} a_m = a_n$ we have $\lim_{m \to \infty} f(a_m) = f(a_n)$.

maso