Lec 1/13

Friday, January 13, 2017 09:05

Theorem $f: (X, \partial_1) \longrightarrow (Y, \partial_2)$ then the following are equiv.

- (1) f cont on X
- (2) f (open) = open
- (3) f (close) = closed

Proposition If (X, d) metric space and $S \subseteq X$, then (S, d) is also a metric space. (restrict d to $S \times S$). has the Subspace topology: open in $(S, d) = (\text{open in } (X, d)) \cap S$ Hosed $= (GS + A) \cap G$

Proposition: If $f(X,d_1) \rightarrow (Y,d_2)$ is cts, $S \subseteq X, T \subseteq Y$ and $f(S) \subseteq T$, then f restricts to a continuous function $f|_{S \rightarrow T}: (S,d_1) \rightarrow (T,d_2)$

Proposition: (1) Compositor of Cts funes are Cts.
(2) identity, constant functions are cts.

Proof: $f: (X, \partial_1) \rightarrow (Y, \partial_2)$, $g: (Y, \partial_2) \rightarrow (Z, \partial_3)$ (4s. then if $W \subseteq Z$ is open in (Z, ∂_1) then $g^{-1}(W) \subseteq Y$ is open in (Y, ∂_2) so f'(g'(W)) is open in (X, ∂_1) $((g \circ f)^{-1}(open) = open)$.

Lemme $f:(x,a_1) \rightarrow (y,a_2)$ is continuous of $f'(any open ballin (y,a_2))$ is open. Lemme 1 any open interval in R is an open set in R (under usual metric). Proof: (a,b) is an o ball $B(\frac{b-a}{2},\frac{b+a}{2})$ (a,∞) is $\bigcup_{n=1}^{\infty} (a,a+n)$ $(-\infty,a)$ is $\bigcup_{n=1}^{\infty} (a-n,a)$

Proposition $f: (X,d) \to \mathbb{R}$ is continuous iff for any $a \in \mathbb{R}$, $f'(-\infty,a)$ and $f'(a,\infty)$ are open in (X,d).

 $P\underline{roof}$: by lemma of cont \Leftrightarrow $f((a_1b))$ open in (x, d) $\forall acb \in \mathbb{R}$.

=>: consequence of lemma 1.

Proposition: i'nv: $\mathbb{R} \setminus \{03 \rightarrow \mathbb{R} \mid \text{in}_{V}(x) = \frac{1}{\chi} \text{ i's continuous}$

Proof: we only need to check that $inv'((-\infty, \alpha))$, $inv'((0, \infty))$ are open (case by case)

i) a>0: $inv'((-\infty, \alpha)) = (0, \frac{1}{a})$ $inv'((-\infty, \alpha)) = inv'((-\infty, 0) \cup (0, \alpha)) = (-\infty, 0) \cup (\frac{1}{a}, \infty)$

Next, show that (i) add: $\mathbb{R}^2 \to \mathbb{R}$ add (x,y) = x+y(2) $mvl: \mathbb{R}^2 \to \mathbb{R}$ mvl(x,y) = xy are cts.

Metric approach to (1).

Definition $f'(x,d_1) \rightarrow (y,d_2)$ is distance preserving if $d_2(f(u),f(v)) = \partial_1(u,v)$. is (nonstrictly) distance reducing if $d_2(f(u),f(v)) \leq \partial_1(u,v)$ distance preserving \Rightarrow nonstrict distance reducing.

Proposition A distance reducing map is continuous.

Proof: $d_1(\pi,\alpha) < \delta \implies d_2(f(x),f(\alpha)) < \xi$ tune $\delta = \xi$

Mediens: add is continuous.

 $P_{06}f$: $|x+y| - |a+b| \le |x-a| + |y-b|$ $|a+b| - |x+y| \le |a-x| + |b-y|$ $\Rightarrow ||x+y| - |a+b|| \le |x-a| + |y-b|$

$$\Rightarrow ||x+y| - |a+b|| \leq |x-a| + |y-b|$$

$$\Rightarrow ||x+y| - |a+b|| \leq |x-a| + |y-b|$$

normal dist botan (x+y) and (a+b). + axi cab list botan (x,y) and (a,b).

Corresponding permutation of (vordinates, so $\sigma(x_1,...,x_n) = \sigma(\chi_{\sigma(i)},...,\chi_{\sigma(n)}). \quad \sigma(s) \in C.$

- Proof: (1) metric proof: σ is distance preserving with d_{ν} . Since $|\sigma(\vec{x})|_{p} = |\vec{x}|_{p}$ for $p \in [1, \infty]$.
 - (2) topological proof: $\sigma^{-1}(B_p(r,\vec{a})) = B_p(r,\sigma^{-1}(\vec{a}))$. Hence inverse images of open sets are open.

temmes: let $\pi_i: \mathbb{R}^n \to \mathbb{R}$ be the itn projection $\pi_i(\vec{x}) = x_i$. Then $\pi_i: S$ continuous.

Proof: (1) metriz proof: T; is distance reducing with any 1/p. ⇒ cts.

(2) $T_{\sigma(i)} = \pi_i \circ \sigma$ Since we can find perimetations σ s.t. $\sigma(i) = i$, i + SU fices to show that T_i is continuous. So it suffixes to show that $T_i^{-1}((a, \infty))$ and $T_i^{-1}((-\infty, a))$ are open in $(\mathbb{R}^n, II_\infty)$ $T_i^{-1}((a, \infty)) = (a, \infty) \times (-\infty, \infty)^{n-1}$ $= \bigcup_{m=1}^{\infty} (a, a + 2m) \times (-m, m)^{n-1} = \bigcup_{m=1}^{\infty} (n, (a+n, 0, ..., 0)) \quad i \leq open.$

Coollary open Horizontal & vertical Half planes are open sets in R2

$$= H_{a}^{+} = \frac{1}{2}(x_{1}y) | x > \alpha = \Pi_{1}^{-1}((\alpha, \infty))$$

$$= H_{a}^{-} = \frac{1}{2}(x_{2}y) | x = \alpha = \Pi_{1}^{-1}((-\infty, \alpha))$$

$$= V_{b}^{+} = \frac{1}{2}(x_{2}y) | y > b = \Pi_{2}^{-1}((-\infty, \infty))$$

$$V_{b}^{-} = \{(x, y) | y < b \}$$
 $T_{2}^{-1}((-\infty, b))$

Cocollary² Open horiz/vert quadrants are open sets in
$$\mathbb{R}^2$$

$$\frac{|1/1|}{(a_1b)} = Q_{(a_1b)}^{+1} = \frac{\xi(x_1y)}{x_2a_1y_2b_3} = H_a^+ \cap V_b^+$$

$$Q_{(a_1b)}^{+1} = Q_{(a_1b)}^{+1} = H_a^+ \cap V_b^-$$

Topological proof of open sets that add is cts:

$$add^{-1}((a, \infty))$$
, $add^{-1}((-\infty, a))$ are open.

NTS:

$$add^{-1}((a, ab)), add^{-1}((-ab, a)) \text{ are open.}$$

$$= \bigcup_{x+y=a} Q_{(x,y)}^{++}$$

$$x+y=a = \bigcup_{x+y=a} Q_{(x,y)}^{-1}$$

for mul:
$$mi'((a, \infty)) = \left(\bigcup_{\substack{xy=a\\ x>0, y\geq0}} Q_{(x,y)}^{++}\right) \cup \left(\bigcup_{\substack{xy=a\\ x<0, y<0}} Q_{(a,y)}^{--}\right)$$