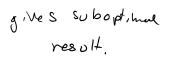
Lec 3/19 Monday, March 19, 2018 12:42

Algorithm:

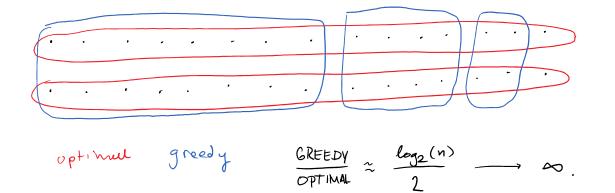
$$i = 0$$

 $k_0 \in X$ /* V_i is the set of uncovered elements attached interview i.e. $*/$
while $U_i \neq \emptyset$ do [select some $T_{i+1} \in F$ that maximizes $|T_{i+1} \cap U_i|$
 $U_{i+1} \leftarrow U_i - T_{i+1}$
 $i \in i+1$
return $\{T_1, T_2, ..., T_i\}$

. .



. . . .



Fix some instance $\langle X, F \subseteq POW(X) \rangle$ of set covering and let N=|X| and let OPT = mesize of an optimal solutionfor this instance.

Theorem:
$$\frac{GRE}{opt} \in O(\log(n))$$
.
 $\left| \frac{U_{max}}{U_{i}} \right| \leq n \left(1 - \frac{1}{opt} \right)^{i}$ For all $i \geq 0$.
 $\frac{Proof}{Proof}$: Base case $| U_{o} | = n$
 $in U_{o} t = N$
 $in U_{o} t = N$
 $in U_{o} t = N$
 $So can U_{i}$. $So Theorem is a set $T \in F$ s.t. $|T_{n} U_{i}| \geq \frac{|U_{o}|}{opt}$
 $So Greep g algorithm Makes a choice at least this big so:
 $|U_{i+1}| \leq |U_{i}| - |T| \leq n \left(1 - \frac{1}{opt}\right)^{i} - \frac{n(1 - \frac{1}{opt})^{i}}{opt}$
 $= n \left(1 - \frac{1}{opt}\right)^{i} \left(1 - \frac{1}{opt}\right) = n \left(1 - \frac{1}{opt}\right)^{i+1}$$$

$$\frac{Pf \text{ of Theorem : }}{So \quad N = \left(\frac{1}{b}\right)^X \text{ so } \ln(n) = -X\ln(b) \implies X = -\frac{\ln(n)}{\ln(b)} \text{ . } \square$$