Recursion Theorem:

Fixed Point form: Let o be a total recursive function. Then I i s.t. Y = Poci).

Self-referential form: Let f be a partial recursive function. Then $\exists i \in \{1, 1\}$, f(i) = f(i, j).

Proof of self-reterential form: By Smn theorem, \exists a total computable σ s.e. $\forall i, j$, $\forall \sigma(i) = f(\langle i, j \rangle)$. Then by the fixed-point form, $\exists i \in \mathcal{L}$. $\forall i \in \mathcal{L}$ \forall

Exercise: assuming SR form, prove FP form.

Some applications of Self-referential form:

- (1) let $f(\langle i',j'\rangle) = i$. Then $\exists i$ s.e. $\forall i' \in \{i' \in \{i' \in \{i'\}\}\}$.
- The say that T.M. M; is minimal if $Y_i = Y_j \implies i < j$.

 Let MIN = $\{i : M_i : s \text{ minimal } \}$.

 (or $Y_i \neq Y_j : \forall j < i$).

MIN is not R.t. Assume it were. Then I an enumerator for MIN.

Let $f(\langle i,j \rangle) = \int_{m}^{m} (j)$ where m is the first number greater

than i which is enumerated. Then f is partial recursive.

5. by self-referential form, $\exists i, s.t. \forall j, \forall i, \forall j = f(\langle i,j \rangle) = f_{m}(j)$.

but i, c.m. 50 m. \$MIN, a contradiction

(1) Is there a H correspondence between K and EMPTY? Yes,

they're both countrible. What about a computable 1-1 correspondence?

No, Since KEY.e. and EMPTY & r.e., and

having a 1-1 correspondence would man KEMEMPTY

and EMPTY Em K by f and g, where

f(i) is the 1-1 correspondence if eek and it's some

non-empty otherwise

g(e) is the inverse of the H if eeempty and it's some non-key.

July 1-1 correspondence & an enumerator for K to get an enumerator for EMPTY, Contradiction

So there is no 1-1 correspondence.

- 1 Define < m.
- D= {\(\chi,\chi,\chi\): \(\chi\) \(\mathbb{W}_{\chi}\) \(\chi\)

 IS D recorsive? IS D re.?

 NO:

 EMPTY

 I \(\chi\) \(\chi,\chi,\chi\)

 TOT

 I \(\chi\) \(\chi,\chi,\chi,\chi\)

 reduces \(K\) \(\chi\).
- (1) Does EGP? (i) Does PGE?

 Ves the re 13 a computable 11 correspondence since by

Yes the re is a computable 11 correspondence since both are recursive.

for B, could a lso use $f(i) = \langle i, a, b \rangle$ where $W_i = k$.