(2) is contable

Lema: if $\exists f: S \rightarrow Z^+ \vdash l$ then S countable

Pf: If S := finite then S := countable. Assume S := finite. Let $f(\delta) = \{i, < i_2 < i_3 < ... \} \subseteq \mathbb{Z}^+$ then let $f(i_n) = n$. g := finite. So g := finite then $f(i_n) = n$. g := finite and onto.

Pels A Partial ordering on = set S is a binary relation R = Sxs written X = y iff (x,y) = R, where the following properties hold

- (i) $X \in X$
- (ii) if X = y, y = Z, men X = Z
- (iii) if x = y, y = x, run x=y.

A total ordering is a partial ordering where $\forall x, y \in S$ ether $x \in y$ or $y \in x$.

Theorem: (0,1) is uncountable.

Pf: Dagonalization Argument

The cardinality of [0,1) is 1 or [R] $Z^{+} \text{ is } 1$

all the cardnals:

0,1,2 ,---

×., ×, ×, ...