
Vilas Winstein Superconcentration—and Chaos

1 Review

Last time we introduced the following objects:

Name Notation Example
Markov Process Xt Ornstein-Uhlenbeck process

Stationary Measure µ N(0, 1)

Markov Semigroup (Ptf)(x) = Ex[f(Xt)] (Ptf)(x) = E[f(e−tx+
√
1− e−2tZ)]

Generator Lf = limt↘0
Ptf−f

t (Lf)(x) = f ′′(x)− xf ′(x)
Dirichlet Energy E(f, g) = ⟨f,−Lg⟩µ E(f, g) = E[∇f(Z) · ∇g(Z)]

We also saw a few properties of these things. Perhaps the most important was the “covariance lemma” which
states that

Covµ[f, g] =

∫ ∞

0

E(f, Ptg) dt.

This can be proved using the heat equation ∂tPt = LPt. We also said thatXt satisfies a “Poincaré inequality”
with constant C if

Varµ[f ] ≤ CE(f, f)

for all f ∈ L2(µ). This is reminiscent of the Poincare inequality from PDEs. We saw that the Ornstein-
Uhlenbeck process satisfies a Poincaré inequality with constant 1. In other words,

Var[f(Z)] ≤ E[|∇f(Z)|2].

Let’s see a quick application of this to Gaussian polymers.

2 Application of Poincaré Inequality

Recall that in the Gaussian polymer model, the minimal energy is given by

En = inf
p

{
−
∑
v∈p

gv

}

where gv are i.i.d. N(0, 1) at each vertex v ∈ Z2, and p ranges over all length-n polymers (i.e. graphs of
Z-random walks starting at 0 and taking n steps). Notice that

∂En

∂gv
= −1{v∈ optimal path}.

Thus

|∇En|2 =
∑
v

(
∂En

∂gv

)2

=
∑
v

1{v∈ optimal path}

= number of vertices in optimal path

= n+ 1.

So the Gaussian Poincaré inequality gives Var(En) ≤ n+ 1.
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3 Spectral Interpretation

L is a negative semidefinite (self-adjoint) operator on L2(µ), so −L is positive semidefinite. We will assume
that we can order the eigenvalues as

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ,

with a corresponding sequence of orthonormal eigenfunctions

u0, u1, u2, . . .

This can be done in the case of the Ornstein-Uhlenbeck process, as well as all other things we will consider.
Notice that u0 ≡ 1 since the generator kills constant functions. By the spectral theorem, the eigenfunctions
form an orthonormal basis for L2(µ), so we can write

f =

∞∑
k=0

⟨uk, f⟩µuk,

which implies that

Eµ[f
2] =

∞∑
k=0

⟨uk, f⟩2µ.

Since u0 ≡ 1, we also have Eµ[f ] = ⟨u0, f⟩µ. Thus we can write

Varµ[f ] =

∞∑
k=1

⟨uk, f⟩2µ.

Also notice that the Dirichlet energy becomes

E(f, f) = ⟨f,−Lf⟩µ =

∞∑
k=0

λk⟨uk, f⟩2µ =

∞∑
k=1

λk⟨uk, f⟩2µ.

Therefore, since λk ≥ λ1 for k ≥ 1, the optimal constant in the Poincaré inequality is 1
λ1
. In other words,

we always know that

Varµ[f ] ≤
1

λ1
E(f, f).

4 Superconcentration

We say that a function f is ϵ-superconcentrated if

Varµ[f ] ≤
ϵ

λ1
E(f, f).

You should think of ϵ as being small in the sense that ϵ → 0 as n → ∞ (there is always some n lurking in
the background). In this case, we can just say that f is superconcentrated.

For example, the maximum of n i.i.d. Gaussians is superconcentrated. One can prove that

Var

[
max
1≤i≤n

Zi

]
∼ C

log n
,

whereas we have
∂

∂Zi
max
1≤i≤n

Zi = 1{Zi is the maximum},

and since there will be a unique maximum almost surely, the Dirichlet energy of the maximum is 1. This
shows that the maximum is C

logn -superconcentrated.

On the other hand, any linear function like Z1+···+Zn√
n

is not superconcentrated The
√
n in the denominator

is immaterial for this fact, since it will scale out of both sides in the Poincaré inequality.
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5 Chaos

Assume that λ1 > 0. Then, recalling the heat equation ∂tPt = LPt which implies that Pt = etL, we have

E(f, Ptf) = ⟨f,−Le−tLf⟩µ

=

∞∑
k=1

λke
−λkt⟨uk, f⟩2µ

≤ e−λ1t
∞∑
k=1

⟨uk, f⟩2µ

= e−λ1tE(f, f).

If the Dirichlet energy is a way to measure the similarity between two functions, this says that the similarity
decreases exponentially as we perturb the noise. We say that f is (ϵ, δ)-chaotic if for all t ≥ δ,

E(f, Ptf) ≤ ϵe−λ1tE(f, f).

Again, think of ϵ, δ → 0 as n → ∞. This says that the similarity decreases even more quickly than expected.
Let’s see how this looks for Gaussian polymers. Recall the notation gt = e−tg +

√
1− e−2tg′, where g′

is an independent Gaussian. Let p̂ be the optimal path in the environment (gv), and let p̂t be the optimal
path in the environment (gtv). Then we have

E(En, PtEn) = E[∇En · ∇PtEn] (deinition of E for OU)

= e−tE[∇En · Pt∇En] (since ∇ ◦ Pt = e−tPt ◦ ∇)

= e−tE[∇En(g) · ∇En(g
t)] (equivalent form of Pt)

= e−t
∑
v∈V

P[v ∈ p̂ and v ∈ p̂t] (derivative of En from page 1)

= e−tE[|p̂ ∩ p̂t|].

Since E(En, En) = n+1 from page 1, to say that En is (ϵ, δ)-chaotic is the same as saying that for all t ≥ δ,

E[|p̂ ∩ p̂t|] ≤ ϵ(n+ 1).

6 Equivalence Between Superconcentration and Chaos

Theorem 1.

(a) If f is ϵ-superconcentrated, then f is
(

ϵeλ1δ

λ1δ
, δ
)
-chaotic for any δ > 0.

(b) If f is (ϵ, δ)-chaotic, then f is (ϵ+ λ1δ)-superconcentrated.

Thus, if λ1 is not large (as a function of n), then superconcentration and chaos are equivalent, since the
smallness of the parameters are equivlent. To see this for part (a), choose δ =

√
ϵ.

The idea of the proof is actually quite simple; we just need to study the covariance lemma

Varµ[f ] =

∫ ∞

0

E(f, Ptf) dt.

If chaos holds, the E(f, Ptf) decreases rapidly to zero, so Varµ[f ] must be small. This shows that chaos
implies superconcentration.

On the other hand, one can show that E(f, Ptf) is a non-negative decreasing function of t. So if the
whole integral is small, E(f, Ptf) must decrease rapidly. This shows that superconcentration implies chaos.

Using these ideas, you can probabl prove the theorem yourself, and the formulas above are what come
out of the algebra you have to do.
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7 Proof of Equivalence Theorem

First, recall that

E(f, Ptf) =

∞∑
k=1

λke
−λkt⟨ukf, ⟩2µ.

This implies that E(f, Ptf) is nonnegative for all t and is a decreasing function of t. In fact, it also implies
that eλ1tE(f, Ptf) is nonincreasing.

Now suppose that f is ϵ-superconcentrated. Then

ϵ

λ1
E(f, f) ≥ Varµ[f ] =

∫ ∞

0

E(f, Ptf) dt.

By the nonnegativity and decreasingness of E(f, Ptf), we obtain for any δ > 0 that

ϵ

λ1
E(f, f) ≥

∫ δ

0

E(f, Ptf) dt ≥ δE(f, Pδf).

Doing some algebra, and multiplying both sides by eλ1δ gives

eλ1δE(f, Pδf) ≤
ϵeλ1δ

λ1δ
E(f, f).

Now using the nonincreasingness of eλ1tE(f, Ptf) gives

eλ1tE(f, Ptf) ≤
ϵeλ1δ

λ1δ
E(f, f).

This proves that f is
(

ϵeλ1δ

λ1δ
, δ
)
-chaotic.

Now suppose that f is (ϵ, δ)-chaotic. By the decreasingness of E(f, Ptf), we have

Varµ[f ] =

∫ ∞

0

E(f, Ptf) dt

≤
∫ δ

0

E(f, f) dt+
∫ ∞

δ

ϵe−λ1tE(f, f) dt

≤ δE(f, f) + ϵ

λ1
E(f, f)

=
ϵ+ λ1δ

λ1
E(f, f).

This shows that f is (ϵ+ λ1δ)-superconcentrated.

8 Application

For the Gaussian polymer, we calculated that E(En, PtEn) = e−tE[|p̂∩ p̂t|], which includes the earlier result
that E(En, En) = n+ 1. Thus, in this case, superconcentration of En means tht

Var[En] = o(n),

and chaos of En means that
E
[∣∣p̂n ∩ p̂tnn

∣∣] = o(n)

for some tn → 0. The theorem thus says that the two facts above are equivalent. Notice that we still haven’t
proved either one of these facts! Some time (and effort) will be dedicated to proving one or the other, but
at least we don’t need to prove both of them from scratch.
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