
Vilas Winstein Stein’s Method—Size-Bias Coupling

1 Introduction

We will give yet another special case of Stein’s Method and use it to give a quantitative bound on the
convergence of the number of isolated vertices of an Erdős-Rényi graph to a normal distribution. These
notes are based on section 3.4 of Nathan Ross’s survey Fundamentals of Stein’s Method.

2 Size-Bias Distribution

Given a nonnegative random variable X with fininte mean µ, we say that Xs has the size-bias distribution
with respect to X if

E[Xf(X)] = µE[f(Xs)]

for every f such that the left-hand side is well-defined. If F and F s are the CDFs of X and Xs respectively,
this condition can be rewritten as ∫

xf(x) dF = µ

∫
f(x) dF s,

and so the condition is equivalent to dF s

dF = x
µ . In particular, the distribution of Xs must be absolutely

continuous with respect to the distribution of X, and one can read from the Radon-Nikodym derivative that
Xs has a bias to higher values, proportional to the size of the value. Hence the name size-bias.

Important Example: The size-bias distribution with respect to any indicator is simply the constant 1.

Now we come to the main theorem of this section:

Theorem 1. Let X ≥ 0 be a random variable with µ = E[X] < ∞ and σ2 = Var[X] < ∞. Let Xs have the
size-bias distribution with respect to X. If W = X−µ

σ and Z ∼ N (0, 1), then

dWas(W,Z) ≤ µ

σ2

√
2

π

√
Var[E[Xs −X|X]] +

µ

σ3
E[(Xs −X)

2
].

Notice that this only requires a second moment assumption (as well as the existence of a suitable size-
biased random variable), which is better than the previous special cases of Stein’s method we’ve seen, which
required third or even fourth moment assumptions.

I’m not going to give the proof here, you can find it in Ross’s notes. It is basically the same idea as the
previous special cases of Stein’s method. We want to bound the quantity |E[f ′(W )−Wf(W )]| for f bounded
with two bounded derivatives, since the supremum of all such quantities is an upper bound for dWas(W,Z).
The idea is to bound the Wf(W ) term by Taylor expanding that function around W and plugging in the

value Xs−µ
σ , and then move things around and obtain the bound.

Notice that if we want this bound to be good, we want Xs to be as closely coupled to X as possible
(while still having the size-bias distribution). Here is one way to construct a decently closely coupled size-bias
distributed random variable in general, if X is a sum of n nonnegative random variables.

Theorem 2. Suppose that X =
∑n

i=1 Xi, where Xi ≥ 0 and E[Xi] = µi. Here is a construction of a
size-bias distributed random variable Xs.

(1) Choose a random index I ∈ {1, . . . , n} proportional to µi and indpendent of all else.

(2) Sample Xs
I from the size-bias distribution with respect to XI .

(3) Sample (Xj)j ̸=I conditioned on XI = Xs
I .

(4) Let Xs =
∑

j ̸=I Xj +Xs
I , the sum involving the sampled values of the random variables.
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Now we have “kicked the can down the road” and we leave the details of the way to couple Xs
i and Xi

up to the implementation/application. But once that is given, we can use it to create a size-bias version of
X as above. Here is the proof that it actually works.

Proof. Write µ = E[X]. For any (valid) function f , we have

E[f(Xs)] =

n∑
i=1

µi

µ
E

f
∑

j ̸=i

Xj +Xs
i


=

n∑
i=1

µi

µ
E

E
f
∑

j ̸=i

Xj +Xs
i

∣∣∣∣∣∣Xs
i

 (∗)

=

n∑
i=1

1

µ
E

XiE

f
∑

j ̸=i

Xj +Xi

∣∣∣∣∣∣Xi

 (∗∗)

=
1

µ

n∑
i=1

E[Xif(X)]

=
1

µ
E[Xf(X)].

Some care needs to be taken at the step going from (∗) to (∗∗). Remember that Xj for j ̸= i are conditioned
on the value of the last random variable. In line (∗) that is Xs

i and in line (∗∗) that is Xi, so the distributions
of the Xj are also changing from one step to the next. ■

3 Application: Isolated Vertices

Theorem 3. Fix α with 1 ≤ α < 2. Let G = G(n, p) be an Erdős-Rényi graph with p = Θ(n−α), and let X
be the number of isolated (degree-zero) vertices in G. Let µ = E[X] and σ2 = Var[X].

dWas

(
X − µ

σ
,Z

)
≤ C

σ
= Θ(n

1
2α−1)

for some constant C independent of n, where Z ∼ N (0, 1).

We can write X =
∑n

i=1 Xi, where Xi is the indicator that the ith vertex is isolated. Notice that there is
absolutely no independence among the Xi’s. They are all positively correlated because if vertex i is isolated
then in particular it does not share an edge with vertex j, so this increases the odds for vertex j to be
isolated. So the previous results which involved random variables with a sparse dependance graph do not
apply here. Nevertheless, we’ll be able to apply Theorem 1 to X to obtain the bound indicated in the
theorem statement.

Proof. First, we will need a size-biased version of X for which we appeal to Theorem 2. First, choose a
random index I ∈ {1, . . . , n} uniformly (since every Xi has the same mean). Then, since XI is an indicator,
Xs

I = 1. So we must sample (Xj)j ̸=I conditioned on XI = 1, or in other words conditioned on the Ith vertex

being isolated. Since all of the edges in G(n, p) are independent, this means we simply sample G(n−1, p) on
the vertices ̸= I. In other words, Xs should be the number of isolated vertices in G after erasing all edges
connected to the Ith vertex, where I is chosen uniformly at random.

In order to apply Theorem 1, we need to compute E[X], Var[X], Var[E[Xs −X|X]], and E[(Xs −X)
2
].

Since any given vertex has probability (1− p)
n−1

to be isolated, we have

µ = E[X] = n(1− p)
n−1

= Θ(n)

by the assumption p = Θ(n−α) which implies that (1− p)
n
tends to a finite positive constant.
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Since E[XiXj ] = (1− p)
2n−3

for i ̸= j, we also have

σ2 = Var(X) =

n∑
i,j=1

E[XiXj ]− µ2

=

n∑
i=1

E[Xi] +
∑
i ̸=j

E[XiXj ]− µ2

= n(1− p)
n−1

+ n(n− 1)(1− p)
2n−3 − n2(1− p)

2n−2

= n(1− p)
n−1

(
1 + (np− 1)(1− p)

n−2
)

= Θ(n2−α)

Now to calculate the terms involving Xs −X. Notice that when we remove all edges attached to the Ith
vertex, we will increase the number of isolated vertices by one if vertex I is not already isolated. Also, if
there were any vertices which were only attached to vertex I, then they will also become isolated. In other
words,

Xs −X = 1{dI>0} +DI

where di is the degree of the ith vertex, and Di is the number of vertices connected to the ith vertex which
have degree 1. Therefore

Var[E[Xs −X|X]] ≤ Var[E[Xs −X|G]]

=
1

n2
Var

[
n∑

i=1

(1{di>0} +Di)

]

≤ 2

n2

(
Var

[
n∑

i=1

Di

]
+Var

[
n∑

i=1

1{di>0}

])
.

Since
∑n

i=1 1{di>0} is the number of non-isolated vertices, it is n−X and so this sum has the same variance
as X, calculated above as Θ(n2−α). As for the first term, notice that

∑n
i=1 Di is actually the number of

vertices in G with degree 1, since each such vertex is counted exactly one time in the sum. So write this
sum as

∑n
i=1 Yi, where Yi is the indicator that vertex i has degree 1 in G. Now

Var

[
n∑

i=1

Yi

]
=

n∑
i,j=1

E[YiYj ]−

(
n∑

i=1

E[Yi]

)2

=
n∑

i=1

E[Yi] +
∑
i̸=j

E[YiYj ]−

(
n∑

i=1

E[Yi]

)2

= n(n− 1)p(1− p)
n−2

+ n(n− 1)[p(1− p)
2n−4

+ (n− 2)
2
p2(1− p)

2n−5
]− n2(n− 1)

2
p2(1− p)

2n−4

= n(n− 1)p(1− p)
n
[1− (n− 1)p(1− p)

n−2
+ (1− p)

n−2
+ (n− 1)

2
p2(1− p)

n−3
]

= Θ(n2−α)

as well. In total, we obtain that Var[E[Xs −X|X]] = O(n−α). Finally, we must calculate

E[(Xs −X)
2
] = E[E[(Xs −X)

2|G]]

=
1

n

n∑
i=1

E[(Di + 1{di>0})
2
]

≤ 1

n

n∑
i=1

E[(Di + 1)
2
]

= E[D2
1] + 2E[D1] + 1

≤ 3E[D2
1] + 1,
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since D1 takes nonnegative integer values. Write D1 =
∑n

i=2 Ai, where Ai is the indicator that vertex i is
connected to vertex 1 and has degree 1. Then

E[D2
1] =

n∑
i,j=2

E[AiAj ]

=

n∑
i=2

E[Ai] +
∑
i̸=j

E[AiAj ]

= (n− 1)p(1− p)
n−2

+ (n− 1)(n− 2)p2(1− p)
2n−5

= Θ(n1−α).

Putting it all together, we apply Theorem 1 and get

dWas(W,Z) ≤ µ

σ2

√
2

π

√
Var[E[Xs −X|X]] +

µ

σ3
E[(Xs −X)

2
]

= O

(
n

n2−α

√
n−α +

n

n3− 3
2α

n1−α

)
= O

(
1

n1− 1
2α

+
1

n1− 1
2α

)
= O

(
1

σ

)
.

This finishes the proof. ■
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