
Vilas Winstein Approximation, Inference, and Sampling of Gibbs Measures

1 Gibbs measures: what and why?

We will be studying Gibbs measures, which are probability measures with the form µ(x) ∝ ef(x) for some
function f on the outcome space Ω (which can be an arbitrary finite set in this talk—but continuous settings
are possible too). Astute readers will notice that every probability measure which assigns nonzero probability
to each outcome is of this form (and all probability measures are of this form if we allow f to take the value
−∞). So the first question is: why is this a useful way to write a probability measure?

1.1 The Gibbs variational principle

Notice that samples from µ are more likely to have a higher value of f . Often, f will represent some objective
function, which should be large on good values of x, so this is a good reason to use a measure proportional
to ef(x). But plenty of other distributions would also have this property, so why this particular form? Well,
the Gibbs measure is in some sense the most “generic” probability measure satisfying this property.

What do we mean by this? Consider the following functional of a probability distribution ν:

Ff (ν) = Eν [f ] + Ent(ν);

the first term is the expecation of f(X) when X ∼ ν, and the second is the entropy of ν,

Ent(ν) = −
∑
x

ν(x) log ν(x).

The functional Ff is (a slight modification of) the “free energy,” but this name is unimportant for us; we
will just aim to maximize the functional. For ν to make Ff large, it must make f high on average, while also
having a high entropy. Making Eν [f ] large is self-explanatory, but the high-entropy term is a “genericity”
condition. Think of this as akin to how the uniform distribution maximizes the entropy alone. We are
searching for the analog of the uniform distribution which takes an objective function f into account.

It turns out that our Gibbs measure µ ∝ ef maximizes this functional. Indeed, for any ν,

Eν [f ] + Ent(ν) =
∑
x

ν(x)(f(x)− log ν(x))

=
∑
x

ν(x) log
ef(x)

ν(x)

≤ log
∑
x

ef(x) (∗)

using the concavity of log at step (∗). The last expression is Ff (µ), as we will see shortly. First, let’s give
a name to the sum inside the log in the last step. We’ll call it the partition function and denote it by Zf .

Notice that it’s the normalization constant for µ, so that µ(x) = ef(x)

Zf
. So we have

Eµ[f ] + Ent(µ) =
∑
x

µ(x)

(
f(x)− log

ef(x)

Zf

)
=

∑
x

µ(x) logZf

= logZf .

Both of the previous two displays imply that

Ff (ν) ≤ Ff (µ)

for any ν, and the only inequality is Jensen’s inequality (∗), which is an equality exactly when ef(x)

ν(x) is constant.

So indeed, µ maximizes Ff ,and the maximal value is logZf . This is the Gibbs variational principle.
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1.2 Connection to statistical physics

You might object that the functional Ff is somewhat arbitrary. Why not weight the two terms unequally?
Perhaps we want to put a greater emphasis on achieving a high value of f , or conversely perhaps we want
to emphasize the entropy term. Since the first term, Eν [f ], is linear in f , reweighting the terms of the free
energy could be achieved simply by multiplying f by some number; let’s do this but also switch notation to
match the literature.

More precisely, let’s consider f(x) as of the form f(x) = −βH(x), where H(x), called the Hamiltonian
represents the energy of the outcome x, and the minus sign is there because we typically want to minimize
energy, not maximize it. The functional becomes

Ff (ν) = −βEν [H] + Ent(ν),

so in order to maximize Ff we want to minimize the average energy and maximize the entropy, and the
parameter β controls how much we care about each of these objectives. Since we want f = βH to be
unitless, β must have units of inverse energy. However, since energy and temperature are related by a
constant multiple (Boltzmann’s constant), β is usually called the “inverse temperature” instead. So for
low β (high temperature), the entropy term is more important and the measure is closer to the uniform
distribution, and for high β (low temperature), the energy term is more important and the measure is closer
to being concentrated on the low-energy states.

1.3 Example: Ising model

Let G = (V,E) be a connected graph. Our state space will be Ω = {±1}V , so each vertex gets a “spin”
which is either up or down. We’ll take

f(x) = β
∑
u∼v

xuxv,

so that each pair of neighboring spins would like to be aligned, and β controls this desire. For low β, the
entropy takes over, and the spins are approximately independent coin flips. For high β, the spins are mostly
aligned to all being +1 or all being −1 so the correlation is very high and the spins are very far from being
independent.

If we get a bit more specific, this gives one of the simplest examples of a phase transition. Let’s take G
to be the d-dimensional torus with side-length n, so that there are nd vertices. It turns out that there is
some critical value of β, called βc, depending on d, which separates two phases of behavior. For β < βc, as n
increases, the spins at two distant vertices in the graph get less and less correlated, while for β > βc, there
is some minimum level of correlation between the spins at any two vertices of the graph, no matter how far.

For β near βc, the structure of the Gibbs measure can be very difficult to describe beyond some ba-
sic bounds on the correlations as just mentioned. However, for very small β the structure is very well-
approximated by independent coin flips at each vertex of the graph, so the Gibbs measure is actually pretty
simple. Additionally, for very large β, while the spins are highly correlated, the Gibbs measure actu-
ally approximately splits into two measures, one concentrated on mostly +1 configurations, and the other
concentrated on mostly −1 configurations. These are also called the +1 and −1 “phases” of the model
respectively, so really the phase transition described above is 2nd order: it is a phase transition between the
model having only one phase and having two phases. The measures corresponding to the two phases in the
very large β regime are again actually quite simple; they are well-approximated by a sea of their main spin
with small perturbations of the opposite spin that are relatively easy to describe.

In general, Gibbs measures which feature a phase transition get very difficult to describe near the critical
point. But there are certain critical structures which appear frequently such as SLE and GFF. This is a
huge topic, so perhaps someone else can give a more in-depth talk (or a few) about this.

Also, if the interactions between the spins are themselves random, we obtain a spin glass. There are
myriad questions about spin glasses: do they have phase transitions? How many? What kind of behavior
do they exhibit in their various phases? This is a huge area of modern research, so it would be great to have
a few talks on this topic as well.
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2 What to do with Gibbs measures?

Our broad and vague themes this semester are approximation, inference, and sampling. Let’s discuss how
each of these things work with Gibbs measures.

2.1 Approximating Gibbs measures in general

In general, a Gibbs measure µ ∝ ef may be quite complicated, even if the function f is computable. The
difficulty comes with computing the partition function Zf , which is needed to do any probability with µ. So
we often want to approximate µ by a simpler measure ν which is easier to compute.

In general, the quality of an approximation ν to µ can be measured using the KL-divergence of ν with
respect to µ, which is defined as

KL(ν∥µ) = Eν log
ν

µ
=

∑
x

ν(x) log
ν(x)

µ(x)
.

This is frequently used as a measure of distance between ν and µ, although it is not a metric in the standard
sense of the word. Since we are looking for a “nice” measure ν which approximates µ, we might try to
minimize KL(ν||µ) over some set of “nice” measures.

If µ ∝ ef is a Gibbs measure with partition function Zf , then we have

KL(ν∥µ) =
∑
x

ν(x) log
ν(x)Zf

ef(x)

=
∑
x

ν(x) log ν(x)−
∑
x

ν(x)f(x) + logZf

= −Ff (ν) + logZf . (∗∗)

So, since Zf is a constant, minimizing the KL-divergence is equivalent to maximizing the Gibbs functional
Ff . Recall that µ itself is the maximizer of Ff , over all possible probability measures on the outcome
space. the point is that we can get a nice approximation by maximizing Ff over some nice subcollection of
probability measures. If this collection is rich enough, then the approximating measure ν should retain some
relevant features of µ.

2.2 Mean-field approximation

One particular “nice” property to have is independence. Suppose our state space Ω is of the form Ω1×· · ·×Ωn.
This is the case, for example, in the Ising model, where we took Ω = {±1}V . The Gibbs measure µ = ef is
a product measure (i.e. a sample has independent coordinates) exactly when f splits as

f(x) = f1(x1) + · · ·+ fn(xn).

Of course, this is not the case for functions f we care about, such as in the Ising model. Nevertheless, we
may wish to approximate µ = ef by a product measure. The mean-field approximation of µ is the product
measure which maximizes Ff , among all product measures on Ω. This is a bit different than the “Näıve”
mean-field approximation you may have seen before, where the interactions with neighbors are replaced by
an interaction with the “mean field,” meaning the average of all vertices in the graph, essentially giving an
interaction structure of the complete graph.

There are strong connections between this definition and the Näıve mean-field approximation, though.
For instance, for the Ising model on the d-dimensional torus that we discussed before, the Näıve mean-field
approximation gives the Curie-Weiss model, which is essentially an Ising model on the complete graph with
nd vertices, with a different temperature β′ = dβ

nd . Of course, this model does not have independent spins.

However, it does split perfectly into two measures, which each have independent spins, corresponding to
the +1 and −1 phases of the model. In the +1 phase measure, the spins are independent with some mean
+m, and in the −1 phase measure, the spins are independent with mean −m. These two measures are the
optimizers of Ff among all product measures. It turns out that m satisfies m = tanh(2dβm), but again this
is just the beginning of the story; this topic would make for a good standalone talk.
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2.3 Variational inference

In general, inference is the task of determining hidden parameters from observed samples. To make things
more concrete, suppose we have a family of distributions Pθ, for θ in the parameter space Θ. For some
unknown θ, we observe a sample X ∼ Pθ. The goal is to estimate the unknown θ.

In the Bayesian framework, we start with a simple prior distribution on Θ, let’s call it µ0. Then, upon
observing the samples X, we can get a posterior distribution µ1 on Θ using Bayes’s rule:

µ1(θ) =
µ0(θ)Pθ(X)

Eθ∼µ0
[Pθ(X)]

.

We assume that µ0(θ) is easily computable for each θ, and the same for Pθ(X) since we have a fixed sample
X. However, computing the expectation in the denominator, which is the overall marginal P (X) of X, may
not be too easy since the integral computation may be tough so computing µ1(θ) in general is not so easy.

So we would like to find an approximation from a class of “nice” distributions, by minimizing KL(ν∥µ1)
for ν in this nice class. But computing KL(ν∥µ1) for any ν actually does require us to know µ1, i.e. to know
the marginal P (X), which is precisely what we couldn’t compute. However, since µ1 is a Gibbs measure

µ1(θ) ∝ efX(θ) with fX(θ) = log(µ0(θ)Pθ(X)),

the same algebra goes through as in (∗∗) and we obtain

KL(ν∥µ1) = −FfX (ν) + logZfX .

Here ZfX is the normalization constant, which is the same as P (X). So minimizing the KL-divergence is
the same as maximizing FfX , but in computing the value of FfX (ν) for any particular ν, we do not have to
compute P (X): recall that the formula

FfX (ν) = Eν [fX ] + Ent(ν)

only depends on the function fX , which we can compute, and the measure ν itself, and we are assuming
that we can compute the above quantities since ν is nice enough, whatever that means.

In this area of statistics, the quantity logP (X) = logZfX is called the “evidence,” because if it is
higher, then X is more typical and so should give a better idea of what the hidden θ is. Additionally, since
KL(ν∥µ1) ≥ 0, the equation (∗∗) tells us that FfX (ν) is a lower bound on the evidence. For this reason, FfX

is called the Evidence Lower BOund, or ELBO for short. There’s a lot more to say here about which types
of “nice” distributions allow one to maximize the ELBO in practice while still being a useful surrogate for a
posterior distribution, and also how these calculations go in the real world. As usual, this would be a good
topic for another talk.

2.4 Sampling via Markov chains

Instead of finding a surrogate distribution as we have examined in the previous two sections, another way to
approximately sample from µ is to find a Markov chain {xt}∞t=0 which has µ as its stationary distribution.
It turns out this can be done without knowing the normalization constant Zf . For instance, we can use the
Metropolis algorithm, which works, at a high level, as follows:

1. Starting at xt ∈ Ω, propose the next state y from a simple distribution, which typically depends on xt.

2. Compute the ratio of probabilities α = µ(y)
µ(xt)

= exp(f(y)− f(xt)), which does not depend on Zf .

3. Sample U ∼ Unif[0, 1]; if U < α we accept and set xt+1 = y. otherwise we reject and set xt+1 = xt.

In the Ising model, for example, in step 1 we can take y to be a configuration where some uniformly random
spin in xt is rerandomized. Under reasonable assumptions about the simple distribution in this step, this
Markov chain does indeed have stationary distribution µ (and in fact is often reversible with respect to µ).

Now the question becomes: how long should we run this Markov chain to get a reasonable sample? This
is another huge topic that could easily be the source of multiple talks this semester. There are many different
methods analogous to the Metropolis algorithm (e.g. Langevin dynamics), as well as tons of ways to analyze
each one (e.g. log-Sobolev inequalities), and various things that can be proved (e.g. cutoff) in order to better
understand these chains.
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