
Vilas Winstein 2nd Moment Method: Connectedness Threshold in G(n,p)

1 Problem Statement and Initial Ideas

Consider the Erdős-Rényi random graph G(n, p), with p = pn a function of n. Today we will give some
insight and a proof of the following classical result:

Theorem 1. If p ≪ logn
n , then G(n, p) is disconnected with probability tending to 1, and if p ≫ logn

n , then
G(n, p) is connected with probability tending to 1.

How can we prove such a result? Let us start with the definitions. A graph is disconnected if there are
at least two connected components, or in other words if there is a nonempty (and non-full) set of vertices
S ⊂ [n] such that S has no edges to [n] \ S. Since S and [n] \ S are symmetric here, we need only consider
sets with size at most n

2 . So we have the following bound, which will help us prove that G(n, p) is connected:

P[G(n, p) is disconnected] ≤
n/2∑
k=1

∑
S⊂[n]
|S|=k

P[there are no edges between S and [n] \ S in G(n, p)].

Since each edge is independent, the probability inside the sum on the right is (1−p)|S|×(n−|S|) = (1−p)k(n−k).
Since k ≤ n

2 so that n− k ≥ n
2 , and since there are

(
n
k

)
≤ nk sets S of size k, we obtain

P[G(n, p) is disconnected] ≤
n/2∑
k=1

(
n

k

)
(1− p)k(n−k)

≤
n/2∑
k=1

nk(1− p)k
n
2

≤
∞∑
k=1

(
n(1− p)n/2

)k

= O
(
n(1− p)n/2

)
,

if we assume that n(1 − p)n/2 is smaller than 1, since the sum of a geometric series is comparable with its
initial term. In fact, the above statement will only be useful for us if n(1− p)n/2 → 0 as n → ∞. When does
this happen? Let’s use the bound 1− x ≤ e−x for all x ∈ R to see that

n(1− p)n/2 ≤ exp
(
log n− p

n

2

)
,

and so n(1 − p)n/2 → 0 if p ≫ logn
n . In other words, we have just proved that G(n, p) is connected with

probability tending to 1 if p ≫ logn
n .

Now let’s examine the above proof to see how we might try to prove the other part of the theorem. If
G(n, p) is actually disconnected, then we know that the above proof can’t work. The step where we bound
the whole geometric sum by the first term indicates that if the first term is small, then the whole sum will
also be small. So for the graph to be disconnected, we must in fact have the first term of the sum be large.

The first term represents the probability that there is an isolated vertex in G(n, p). Thus the strategy
suggested is to try and prove that if p ≪ logn

n , then there will be an isolated vertex with probability tending

to 1. This in turn would prove that the graph is disconnected with probability tending to 1 if p ≪ logn
n .

2 Moment Methods

How can we prove that there is an isolated vertex in G(n, p) with high probability? Recall that the first
moment method can tell us when there does not exist something with high probability if the expected number

1



of such things is small: If we letX denote the number of things (which is a nonnegative integer-valued random
variable), then

P[X > 0] =

∞∑
k=1

P[X = k] ≤
∞∑
k=1

k × P[X = k] = E[X].

But in order to go the other way we must use the second moment method:

P[X > 0] ≥ E[X]2

E[X2]
.

Intuitively, if the spread of the random variable is smaller than the expectation, then there is a high chance
that the variable will be closer to its expectation than to zero. This is a special case of the Paley-Zygmund
inequality.

Theorem 2 (Paley-Zygmund). If X is a nonnegative random variable and 0 ≤ θ ≤ 1, then

P[X > θE[X]] ≥ (1− θ)2
E[X]2

E[X2]
.

Proof. Decompose E[X] as

E[X] = E[X1{X≤θE[X]}] + E[X1{X>θE[X]}] ≤ θE[X] +
√
E[X2]P[X > θE[X]]

(using Cauchy-Schwarz) and solve for P[X > θE[X]]. ■

3 Isolated Vertices

Now let Xn denote the number of isolated vertices of G(n, p) and suppose that p ≪ logn
n . Let’s compute the

first and second moments of Xn. First, since each vertex has probability (1− p)n−1 to be isolated,

E[Xn] = n(1− p)n−1.

Now, by writing Xn as a sum of indicators, one for each vertex, we obtain

E[X2
n] =

∑
i,j∈[n]

P[both i and j are isolated]

=
∑
i∈[n]

P[i is isolated] +
∑
i̸=j

P[both i and j are isolated]

= n(1− p)n−1 + n(n− 1)(1− p)2n−3

≤ n(1− p)n−1 + n2(1− p)2n−3,

since there are a total of 2(n− 2) + 1 edges incident to any two distinct vertices.
So the second moment method tells us that

P[there is an isolated vertex] ≥ n2(1− p)2n−2

n(1− p)n−1 + n2(1− p)2n−3

=

(
1

n(1− p)n−1
+

1

1− p

)−1

.

Since p → 0, we have 1
1−p → 1. To control the other term, notice that we should have something like

(1− p)n−1 ≈ e−p(n−1), which means that if p ≪ logn
n then the other term in the denominator above goes to

0, and we get P[there is an isolated vertex] ≥ (1 + o(1))−1 = 1− o(1).

To make this rigorous, use the inequality 1− x ≥ e−x−x2

, which holds for 0 ≤ x ≤ 1
2 , to obtain that

n(1− p)n−1 ≥ exp
(
log n− p(n− 1)− p2(n− 1)

)
.

The p2(n− 1) term disappears since p2(n− 1) ≪ log2 n
n . This finishes the proof.
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